
MODULAR REPRESENTATIONS OF THE
SUPERGROUP Q(n), II

Jonathan Brundan

We continue our study of the representations of the su-
pergroup Q(n) over a field of odd positive characteristic. The
focus here is on the aspects of the theory that depend in some
way on the interpretation of induction in terms of sheaf coho-
mology of certain equivariant vector bundles on the associated
flag superschemes.

1. Introduction

This is the second of two articles investigating the representation theory of
the supergroup G = Q(n) over an algebraically closed field k of character-
istic p > 2. In the first article [3], we extended many of the basic algebraic
properties (e.g. the results of Penkov [16]) from characteristic 0 to charac-
teristic p. The present article is concerned instead with results which depend
in some way on the interpretation of induction from a Borel subgroup B in
terms of sheaf cohomology on the flag superscheme G/B. These flag su-
perschemes, and their analogues G/P for arbitrary parabolic subgroups of
G, were introduced originally by Manin [12, 13], and have already played a
fundamental role in the work of Penkov and Serganova [18, 19, 20] on the
representation theory of Q(n) over C; see also [1].

To sketch the results proved here in more detail, recall from [3] that
the irreducible representations of G are parametrized by p-strict dominant
weights, i.e. the set

X+
p (n) :=

{
λ = (λ1, . . . , λn) ∈ Zn

∣∣∣∣ λ1 ≥ · · · ≥ λn with
λi = λi+1 only if p|λi

}
.

The irreducible representation L(λ) corresponding to λ ∈ X+
p (n) can be

realized as the unique irreducible submodule of the induced module

H0(λ) := H0(G/B,L (u(λ))),

where u(λ) is a certain irreducible B-supermodule of dimension a power of
2 corresponding to the weight λ. For λ ∈ X+

p (n), we now study the higher
cohomology modules

H i(λ) := H i(G/P,L (u(λ)))

1
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where P is the largest parabolic subgroup that the B-supermodule u(λ) can
be inflated to. Let

Eλ :=
∑
i≥0

(−1)ich H i(λ)

denote the corresponding Euler characteristic. In Theorem 4.3, we show
that Eλ is equal to the classical symmetric function known as Schur’s P -
function, scaled by dim u(λ). The method used to prove this goes back at
least to Penkov [17, §2.3], but we have attempted here to fill in some of the
details, as promised in [1, 2].

The Eλ’s are important because they form a natural basis for the character
group of G. We would of course like to be able compute the decomposition
numbers dλ,µ defined from the equation

Eλ =
∑

µ∈X+
p (n)

dλ,µLµ,

where Lµ := ch L(µ). Note that dλ,µ ∈ Z, dλ,λ = 1 and dλ,µ = 0 unless
µ ≤ λ in the usual dominance ordering. It appears to be the case in all the
examples we have computed that the dλ,µ are always non-negative. This is
not obvious, since one can definitely have that H i(λ) 6= 0 for i > 0, unlike the
analogous situation when G is a reductive algebraic group; see Example 5.3.
There is one further piece of information about the decomposition numbers
dλ,µ proved in Theorem 6.3: they are zero unless λ and µ have the same
residue content, a purely combinatorial notion which appeared originally in
the work of Leclerc and Thibon [10] in their study of the canonical bases of
the Fock space of type A

(2)
p−1, see also [3, §8]. We refer to this result as the

linkage principle for Euler characteristics.
At the end of the article, we have included by way of further examples

tables of the decomposition matrices D = (dλ,µ) for the polynomial repre-
sentations of Q(n) of degree d ≤ 12 in characteristic p = 3 (with n large).
In that case, the dominant weights we are considering satisfy λi ≥ 0 for all
i, so we can represent them simply as partitions. The calculations here were
made in part using a computer.

2. Geometric interpretation of induction

Throughout the article, we will work over a fixed algebraically closed field k
of characteristic p 6= 2. For our general conventions regarding superalgebras,
supergroups and superschemes, we refer to [3, §2] and [12, ch.3, §1–2, ch.4,
§1]. We will simultaneously use geometric and functorial languages when
talking about superschemes, in the spirit of [7, 9].

For a superscheme X, an OX-supermodule means a sheaf M of abelian
groups on the topological space underlying X such that M (U) has the
additional structure of an OX(U)-supermodule for each open subset U ⊆
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X. Moreover, for open subsets U ⊆ V , the restriction M (V ) → M (U) is
required to be an even supermodule homomorphism. Given superschemes
X, Y and an OX - resp. OY -supermodule M resp. N , M ⊗N will denote
their “outer” tensor product, i.e. the OX×Y -supermodule pr∗XM ⊗OX×Y

pr∗Y N . If X, Y are noetherian and M ,N are quasi-coherent, then M ⊗N
is again quasi-coherent and moreover (M ⊗N )(U ×V ) = M (U)⊗k N (V )
for affine open subsets U ⊆ X, V ⊆ Y .

Let modOX
(resp. qcohOX

) denote the category of OX -supermodules (resp.
quasi-coherent OX -supermodules). Note we allow arbitrary (not necessarily
homogeneous) morphisms: a morphism f : M → N of OX -supermodules
satisfies

f(am) = (−1)f̄ āaf(m)

for each m ∈M (U), each a ∈ OX(U) and each open subset U of X. Here,
f̄ , ā ∈ Z2 denote parity assuming f and a are homogeneous, and the formula
should be interpreted by extending additively from the homogeneous case if
they are not. The categories modOX

and qcohOX
are not abelian categories,

but the underlying even categories consisting of the same objects and only
even morphisms are. This allows us to make use of all the usual machinery
of homological algebra. We also have the parity change functor

(1) Π : modOX
→ modOX

defined on objects by letting (ΠM )(U) equal M (U) (for U ⊆ X open) as
an abelian group, but with the opposite Z2-grading and new OX(U)-action
defined by a ·m := (−1)āam.

We have the usual sheaf cohomology functors H i(X, ?) from the category
of sheaves of abelian groups on the underlying topological space to the cat-
egory of abelian groups. If M is an OX -supermodule, each H i(X, M ) has
a canonical structure as an OX(X)-supermodule (hence in particular as a
vector superspace). This follows because the category modOX

has enough
injectives and, as in [8, III.2.4], injective OX -supermodules are acyclic for
H0(X, ?); so we can compute H i(X, M ) using an resolution of M by injec-
tive OX -supermodules. We recall [8, III.2.7]:
Grothendieck’s vanishing theorem. For a noetherian superscheme X,
we have that H i(X, ?) = 0 for all i > dim X, where dim X denotes dimension
as a topological space.

To generalize other basic results, one can exploit the canonical filtration
of an OX -supermodule M , namely, the filtration

(2) M ⊇JXM ⊇J 2
XM ⊇ . . . .

Here, JX denotes the quasi-coherent sheaf of superideals on X defined as
the sheaf associated to the presheaf U 7→ OX(U)OX(U)1̄. The underlying
purely even scheme Xev is the scheme over k equal to X as a topological
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space, with structure sheaf OX/JX . The factors J i
XM /J i+1

X M in the
canonical filtration are OXev -modules, so since

H i(X, J i
XM /J i+1

X M ) = H i(Xev,J
i
XM /J i+1

X M )

as the underlying topological spaces of X and Xev are equal, we can obtain
information about H i(X, M ) using the purely even theory, the long exact
sequence of cohomology and induction on the length of the canonical fil-
tration (which is always finite for noetherian X). In particular, using [8,
III.3.5] and [8, III.5.2], one obtains:
Serre’s vanishing theorem. For a noetherian superscheme X with Xev

affine, we have that H i(X, M ) = 0 for all quasi-coherent OX-supermodules
M and all i > 0.
Serre’s finiteness theorem. For a noetherian superscheme X with Xev

projective, H i(X, M ) is finite dimensional for all coherent OX-supermodules
M and all i ≥ 0.

We say that X is decomposable if OX is isomorphic to the symmetric
superalgebra of the OXev -supermodule JX/J 2

X . If instead X has an open
cover (Ui)i∈I such that each (Ui,OX |Ui) is decomposable, then X is called
locally decomposable.

Lemma 2.1. If X is locally decomposable and M is a locally free OX-
supermodule, there is a natural isomorphism

J i
XM /J i+1

X M ' Si(JX/J 2
X)⊗OXev

M /JXM .

Proof. Without any assumptions on X or M , there is a natural map

Si(JX/J 2
X)⊗OXev

M /JXM −→J i
XM /J i+1

X M

induced by multiplication. To check that it is an isomorphism for M locally
free and X locally decomposable, reduce to the case that X is affine and
decomposable and M is free, and then argue directly. �

Now let G be an algebraic supergroup in the sense of [3, §2]. Thus G is
a functor from the category of commutative superalgebras to the category
of groups which is an affine superscheme when viewed just as a functor to
sets, such that in addition the coordinate ring k[G] is finitely generated as
a k-superalgebra. Suppose we are given a right action ρ : X × G → X
of G on a noetherian superscheme X. There is a standard notion of a G-
equivariant OX -supermodule (OXG-supermodule for short), for example as
in [4, 5.1.6] or [15, 1.6]. We present here a somewhat different formulation
of the definition in the quasi-coherent case, which we found easier to work
with.

Let µ : G×G→ G be multiplication, e : Spec k → G be the identity. The
comorphisms are denoted µ# : OG → µ∗(OG ⊗ OG) and e# : OG → e∗k. A
quasi-coherent OXG-supermodule means a quasi-coherent OX -supermodule
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M equipped with an even OX -supermodule map η : M → ρ∗(M ⊗ OG)
such that the following diagrams of sheaves on X commute:

M
η−−−−→ ρ∗(M ⊗ OG)

ρ∗(idM ⊗µ#)−−−−−−−−→ ρ∗(idX ×µ)∗(M ⊗ OG ⊗ OG)∥∥∥ ∥∥∥
M

η−−−−→ ρ∗(M ⊗ OG)
ρ∗(η⊗idO

G
)

−−−−−−−→ ρ∗(ρ× idG)∗(M ⊗ OG ⊗ OG)

(3)

M
η−−−−→ ρ∗(M ⊗ OG)x∼ yρ∗(idM ⊗e#)

M ⊗ k ρ∗(idX ×e)∗(M ⊗ k)

(4)

(Observe if X is a point these are just the usual comodule axioms.)
There is a functor SpecX which defines a contravariant equivalence from

the category of quasi-coherent OX -superalgebras to the category of super-
schemes over X which are affine over X; its definition is the same as in
the purely even case, see e.g. [7, I, §2, no.3]. For a quasi-coherent OX -
supermodule M , we can consider the associated fibration

V(M ) := SpecX S(M ) σ−→ X,

where S(M ) denotes the symmetric superalgebra. If M is a quasi-coherent
OXG-supermodule, the structure map η extends in a unique way to an OX -
superalgebra map

η̃ : S(M )→ ρ∗(S(M )⊗ OG).

This in turn defines a morphism SpecX(ρ∗(S(M )⊗ OG))→ SpecX(S(M ))
of superschemes over X. Composing with the canonical map

V(M )×G ∼= SpecX×G(S(M )⊗ OG)→ SpecX(ρ∗(S(M )⊗ OG)),

we obtain a commutative diagram

V(M )×G
Σ−−−−→ V(M )

σ×idG

y yσ

X ×G
ρ−−−−→ X

Now (3) implies that Σ satisfies associativity, i.e. there is a commutative
cube analogous to that on [15, p.31], while (4) gives that Σ is unital in the
obvious sense. So, Σ is a “linear” right action of G on the fibration V(M ).
Conversely, we can recover the original structure map η of M from such an
action Σ since η̃ = σ∗Σ#.

There is a natural notion of morphism between two quasi-coherent OXG-
supermodules, giving us the category qcohOXG. Its underlying even category
is abelian, and moreover:
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Lemma 2.2. (i) The category qcohOXG has enough injectives.
(ii) Injective objects in qcohOXG are acyclic for H0(X, ?).

Proof. (i) One first checks that the forgetful functor res : qcohOXG → qcohOX

has a right adjoint, namely, the functor ind := ρ∗(? ⊗ OG). Here for any
quasi-coherent OX -supermodule M , indM = ρ∗(M ⊗ OG) is viewed as an
OXG-supermodule with structure map ρ∗(idM ⊗µ#) : indM → ρ∗(indM ⊗
OG).

Now take any OXG-supermodule M with structure map η : M →
ρ∗(M⊗OG). Embed resM into an injective quasi-coherent OX -supermodule
N (which we can do since qcohOX

has enough injectives, cf. [8, III.3, ex.6]).
Applying the left exact functor ind, we get a monomorphism ind◦res(M )→
ind(N ), with ind(N ) being injective. It remains to see that M embeds
into ind ◦ res(M ); but this is immediate since η : M → ind ◦ res(M ) is a
monomorphism thanks to axiom (4).

(ii) By the proof of (i), any injective object in qcohOXG embeds into (hence
is a summand of) ρ∗(M ⊗ OG) for an injective object M ∈ qcohOX

. So it
suffices to check that H i(X, ρ∗(M ⊗ OG)) = 0 for all i > 0. Note ρ is the
composite

X ×G
f−→ X ×G

prX−→ X,

where f is the isomorphism defined by (x, g) 7→ (xg, g). Hence, ρ is an
affine morphism, so (Riρ∗)(M ⊗ OG) = 0 for all i > 0. Hence the Leray
spectral sequence degenerates to give H i(X, ρ∗(M⊗OG)) ' H i(X×G, M⊗
OG). Now by Serre’s vanishing theorem and the Kunneth formula, this is
isomorphic to H i(X, M )⊗ k[G], which is zero for i > 0 by the injectivity of
M . �

Let M be a quasi-coherent OXG-supermodule with structure map η. The
space H0(X, M ) of global sections has the structure of a G-supermodule,
with structure map obtained as the composite

H0(X, M )
η−→ H0(X, ρ∗(M ⊗ OG)) ' H0(X, M )⊗ k[G].

It follows from this and Lemma 2.2 that each H i(X, M ) carries a canon-
ical G-supermodule structure. Indeed, we can compute H i(X, M ) using
a resolution of M by injective OXG-supermodules, these being acyclic for
H0(X, ?). In other words, we can regard each H i(X, ?) as a functor from
qcohOXG to modG.

Suppose next that H is a closed subgroup of our fixed algebraic super-
group G. By a quotient of G by H (“H\G”) we mean here a noetherian
superscheme X together with a morphism π : G→ X such that:

(Q1) π is constant on the right H(A)-cosets H(A)g in G(A) for each com-
mutative superalgebra A and each g ∈ G(A);
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(Q2) given any other morphism f : G→ Y of superschemes that is constant
on the right H(A)-cosets in G(A) for each commutative superalgebra
A, there is a unique f̃ : X → Y such that f = f̃ ◦ π;

(Q3) π : G→ X is a faithfully flat, affine morphism.
Assume that X is a quotient of G by H. Let ρ : X × G → X be the right
action of G on X induced by multiplication in G. We have commutative
diagrams

G×G
µ−−−−→ G

π×idG

y yπ

X ×G
ρ−−−−→ X

H ×G
µ̄−−−−→ G

idH ×π

y yπ

H ×X
prX−−−−→ X

where µ is the multiplication in G, and µ̄ is its restriction to H ×G.
The first diagram gives that π∗OG is a quasi-coherent OXG-supermodule

with structure map π∗µ
# : π∗OG → ρ∗(π∗OG ⊗ OG). Hence, for any vector

superspace M , M ⊗ π∗OG is also a quasi-coherent OXG-supermodule with
structure map idM ⊗π∗µ

#. We will usually denote this by Mtr ⊗ π∗OG to
indicate that the action on M is trivial. In particular, k[H]tr ⊗ π∗OG is a
quasi-coherent OXG-supermodule in this way. From the second diagram, we
get a natural OXG-supermodule map δ := π∗µ̄

# : π∗OG → k[H]tr ⊗ π∗OG.
If M is an H-supermodule with structure map η : M → M ⊗ k[H] (see [3,
§2]), we define the “induced” quasi-coherent OXG-supermodule L (M) to
be the kernel of the map ∂ = η ⊗ idπ∗OG

− idM ⊗δ in the following exact
sequence of quasi-coherent OXG-supermodules:

(5) 0 −→ L (M) −→Mtr ⊗ π∗OG
∂−→Mtr ⊗ k[H]tr ⊗ π∗OG.

If f : M →M ′ is a morphism of H-supermodules, L (f) : L (M)→ L (M ′)
can be defined as the restriction of f ⊗ idπ∗OG

, giving that

(6) L : modH → qcohOXG

is a functor, where modH denotes the category of all H-supermodules.
Conversely, recall that e : Spec k → G denotes the identity of G; we let

ē : Spec k → X denote π ◦ e. There is a natural H-supermodule structure
on M (ē) := Mē ⊗OX,ē

k. In other words, “evaluation at ē” gives a functor

(7) E : qcohOXG → modH .

In terms of the associated action of G on the fibration V(M ), the restriction
of the action to H induces a right action of H on the fiber V(M )ē. There is
a natural isomorphism V(M )ē = SpecX(S(M ))×X Spec k ∼= Spec S(M (ē))
(cf. [7, I, §2, 3.6] and [8, II, ex.5.16(e)]), so that H acts on the right on
Spec S(M (ē)). Now the structure map on M (ē) is precisely the restriction
to M (ē) of the comorphism of this right action of H on Spec S(M (ē)).
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We are ready state the following fundamental result, cf. [6, p.249] or [5,
Theorem (2.7)]. We omit the proof, but note that it depends in an essential
way on the property (Q3) of quotients as formulated above.

Theorem 2.3. The functors L and E are mutually inverse equivalences.
Moreover, for an H-supermodule M , L (M) is locally free of rank equal to
the superdimension of the vector superspace M .

There are induction and restriction functors

indG
H : modH → modG, resG

H : modG → modH

defined in [3, §6]. We recall that restriction is exact and indG
H is right adjoint

to resG
H . Comparing the formula [3, (6.1)] with (5), it is immediate that there

is an isomorphism indG
H ' H0(X, ?)◦L of functors from modH to modG. By

the theorem, the functor L is exact and maps injectives to injectives. So,
letting RiindG

H denote the ith right derived functor of induction, we have:

Corollary 2.4. For each i ≥ 0, we have that

RiindG
H ' H i(X, ?) ◦L .

The goal in the remainder of the section is to sketch the proof of a result
from [17, §2.3] about Euler characteristics. Let π : G→ X be a quotient of
G by H as before. We now make the following additional assumptions:
(Q4) the restriction πev : Gev → Xev of π to the underlying purely even

schemes is a quotient of Gev by Hev;
(Q5) X is locally decomposable.
Write i : Xev → X for the canonical closed immersion. The map i is Gev-
equivariant, so taking direct and inverse images as OX -supermodules give
functors

i∗ : modOXevGev → modOXGev , i∗ : modOXGev → modOXevGev .

There is a natural restriction functor resG
Gev

: qcohOXG → qcohOXGev
, and

obviously

(8) H i(X, resG
Gev

M ) ' resG
Gev

H i(X, M )

for any quasi-coherent OXG-supermodule M . Finally, by a special case of
the above theory, applied to the quotient πev : Gev → Xev of Gev by Hev,
we have inverse equivalences

Lev : modHev → qcohOXevGev
, E ev : qcohOXevGev

→ modHev .

Lemma 2.5. For any H-supermodule M , we have that

i∗(resG
Gev

L (M)) ' Lev(resH
Hev

M).
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Proof. Let M be a quasi-coherent OXG-supermodule. Then,

V(i∗M )ē ' (V(M )×X Xev)ē = V(M )×X Xev ×Xev Spec k

' V(M )×X Spec k = V(M )ē.

Hence, E ev(i∗M ) ' E (M ) as Hev-supermodules. The lemma follows on
applying the functor Lev to both sides. �

Suppose that M is a quasi-coherent OXG-supermodule. The canonical
filtration (2) of M is a filtration as an OXGev-supermodule (for instance,
JXM is the kernel of the canonical map M → i∗i

∗M ). The factors are
OXevGev-supermodules.

Lemma 2.6. There is an isomorphism

JX/J 2
X ' Lev((LieG/LieH)∗1̄)

as OXevGev-supermodules.

Proof. The sheaf ΩX of (super) Kähler differentials on X (over k) has a nat-
ural G-structure, and the closed immersion i : Xev → X induces a standard
exact sequence

JX/J 2
X

δ−→ ΩX ⊗OX
OXev −→ ΩXev −→ 0

of OXevGev-supermodules (cf. [8, II.8.12] with appropriate modifications in
the super case). Using the assumption that X is locally decomposable, one
checks by reducing to the case that X is affine and decomposable that the
map δ is a monomorphism. Now we note that E (ΩX) ' (Lie(G)/Lie(H))∗

and E ev(ΩXev) ' (Lie(Gev)/Lie(Hev))∗. Applying the equivalence of cate-
gories E ev and Lemma 2.5, we obtain an exact sequence

0 −→ E ev(JX/J 2
X) −→ (Lie(G)/Lie(H))∗ −→ (Lie(Gev)/Lie(Hev))∗ −→ 0

of Hev-supermodules. Since Lie(Gev) = Lie(G)0̄ and similarly for H, we
deduce that

E ev(JX/J 2
X) ' (Lie(G)/Lie(H))∗1̄

and the lemma follows. �

Theorem 2.7. Let M be an H-supermodule. Then, the factors in the canon-
ical filtration of L (M) satisfy

J i
XL (M)/J i+1

X L (M) ' Lev(Si[(LieG/LieH)∗1̄]⊗ resH
Hev

M)

as OXevGev-supermodules.

Proof. Note L (M) is locally free by Theorem 2.3. So we obtain from
Lemma 2.1 an isomorphism

J i
XL (M)/J i+1

X L (M) ' Si(JX/J 2
X)⊗OXev

M /JXM .
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This is actually an isomorphism as OXevGev-supermodules. So the theorem
follows using Lemmas 2.5 and 2.6. (We have noted that the usual operations
of tensor algebra commute with the functor Lev). �

For the final corollary, we make one further assumption:
(Q6) Xev is projective.

Corollary 2.8. For any finite dimensional H-supermodule M , we have that∑
i≥0

(−1)i
[
resG

Gev
RiindG

HM
]

=

∑
i≥0

(−1)i
[
RiindGev

Hev

{
S((Lie(G)/Lie(H))∗1̄)⊗M

}]
where the equality is written in the Grothendieck group of finite dimensional
Gev-supermodules.

Proof. By Theorem 2.3, Corollary 2.4 and Serre’s finiteness theorem, the
functor RiindG

H sends finite dimensional H-supermodules to finite dimen-
sional G-supermodules, and similarly for RiindGev

Hev
. So all modules appearing

in the formula are finite dimensional. Moreover, only finitely many terms in
either summation are non-zero by Grothendieck vanishing. So the formula
at least makes sense. Now combine (8), Corollary 2.4, Theorem 2.7 and
additivity of Euler characteristics. �

3. Flag superschemes of type Q(n)

Now we are ready to introduce the supergroup G = Q(n) into the picture.
Recall from [3, §3] that G is the functor from the category of commutative
superalgebras to the category of groups defined on a superalgebra A so that
G(A) is the group of all invertible 2n× 2n matrices of the form

(9) g =
(

S S′

−S′ S

)
where S is an n × n matrix with entries in A0̄ and S′ is an n × n matrix
with entries in A1̄. The underlying even group Gev is isomorphic to GL(n).

We also need the closed subgroup H of G defined on a commutative
superalgebra A so that H(A) consists of all matrices of the form (9) with
S, S′ being diagonal matrices, and the standard Borel subgroup B of G
defined so that B(A) consists of matrices with S, S′ being lower triangular.
Let T = Hev be the standard n-dimensional maximal torus of Gev. Let X(T )
be the character group of T , the free abelian group on generators ε1, . . . , εn

where εi : T → Gm picks out the ith diagonal entry. The root system
associated to Gev is denoted R = R+∪(−R+), where R+ = {εi−εj |1 ≤ i <
j ≤ n} ⊂ X(T ). We partially order X(T ) by the usual dominance order, so
λ ≤ µ if and only if µ− λ is a sum of positive roots.
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For λ =
∑n

i=1 λiεi ∈ X(T ), we write xλ = xλ1
1 . . . xλn

n ∈ Z[x±1
1 , . . . , x±1

n ].
The Weyl group W ∼= Sn associated to Gev acts naturally on X(T ) hence
on Z[x±1

1 , . . . , x±1
n ]. The character

ch M :=
∑

λ∈X(T )

(dim Mλ)xλ

of a finite dimensional G-supermodule M is naturally W -invariant, so is an
element of the ring Z[x±1

1 , . . . , x±1
n ]W of symmetric functions.

The irreducible G-supermodules are classified in [3, Theorem 6.11] by
their highest weights. For every λ =

∑n
i=1 λiεi ∈ X(T ), there is by [3,

Lemma 6.4] a unique irreducible H-supermodule denoted u(λ) with char-
acter 2b(hp′ (λ)+1)/2cxλ, where hp′(λ) denotes the number of i = 1, . . . , n for
which p - λi. Let X+

p (T ) denote the set of all λ =
∑n

i=1 λiεi ∈ X(T )
such that λ1 ≥ · · · ≥ λn and moreover λi = λi+1 implies p|λi for each
i = 1, . . . , n− 1. Then, according to [3, Theorem 6.11], the induced module

(10) H0(λ) := indG
Bu(λ)

is non-zero if and only if λ ∈ X+
p (T ), and in that case H0(λ) has a unique

irreducible submodule denoted L(λ). The {L(λ) | λ ∈ X+
p (T )} form a com-

plete set of pairwise non-isomorphic irreducible G-supermodules. Also by
[3, Lemma 6.10], L(λ)λ ' u(λ) and the lowest weight of L(λ) is w0λ, where
w0 is the longest element of W .

Next we introduce the standard Levi subgroups of G. Just as for GL(n),
these can be parametrized by compositions of n, i.e. tuples γ = (γ1, . . . , γs)
of positive integers summing to n. Given such a γ, the standard Levi sub-
group Gγ

∼= Q(γ1)× · · · ×Q(γs) of G is defined on a commutative superal-
gebra A so that Gγ(A) is the subgroup of G(A) consisting of all elements of
the form (9) with S, S′ being block diagonal matrices, block sizes γ1, . . . , γs

down the diagonal. The standard parabolic subgroup Pγ with Levi factor Gγ

is defined similarly, so Pγ(A) consists of all elements of the form (9) with
S, S′ being lower triangular block matrices, block sizes γ1, . . . , γs down the
diagonal. Also let U+

γ denote the unipotent radical of the opposite parabolic
subgroup to Pγ . Thus, U+

γ (A) consists of all matrices of the form (9) with
S, S′ being upper unitriangular block matrices, block sizes γ1, . . . , γs down
the diagonal. The root system associated to Gγ will be denoted Rγ ⊆ R,
and its Weyl group is Wγ ≤W , with longest element denoted wγ .

Lemma 3.1. Let λ ∈ X+
p (T ) and γ be a composition of n satisfying wγλ =

λ. Then, indPγ

B u(λ) ' u(λ), i.e. the H-action on u(λ) extends uniquely to a
Pγ-action.

Proof. As in [3, Lemma 6.10(i)], the lowest weight of indPγ

B u(λ) is wγλ =
λ. �
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We need the parabolic analogue of the big cell. For 1 ≤ i, j ≤ n, let
si,j resp. s′i,j be the coordinate function picking out the ij-entry of the
matrix S resp. S′ of g ∈ G(A) written in the form (9). As in [3, §3], the
coordinate ring k[G] is the free commutative superalgebra on even generators
si,j and odd generators s′i,j localized at det := det((si,j)1≤i,j≤n). Instead,
for 1 ≤ m ≤ n, define detm to be the determinant of the m × m matrix
(si,j)1≤i,j≤m. Given a composition γ = (γ1, . . . , γs) of n, set

detγ = detγ1 detγ1+γ2 . . .detγ1+γ2+···+γs .

We will denote the principal open subset of G defined by detγ by Ωγ ; so Ωγ

is an affine superscheme with coordinate ring k[Ωγ ] being the localization of
k[G] at detγ . Proceeding by induction on the number s of blocks, one shows
as in [3, Theorem 3.5] that:

Lemma 3.2. Multiplication defines an isomorphism of affine superschemes
between Pγ × U+

γ and Ωγ.

Let V be the natural G-supermodule. Thus, V is the vector superspace on
basis v1, . . . , vn, v′1, . . . , v

′
n, where vi is even and v′i is odd. For a superalgebra

A, we identify elements of V ⊗A with column vectors

n∑
i=1

(vi ⊗ ai + v′i ⊗ a′i)←→



a1
...
an

a′1
...
a′n


.

Then, the action of G(A) on V ⊗ A defining the supermodule structure is
the obvious action on column vectors by left multiplication. Moreover, the
map J : V → V, vi 7→ v′i, v

′
i 7→ −vi is an odd automorphism of V as a

G-supermodule.
Instead, let Ṽ denote the affine superscheme defined on a superalgebra A

by Ṽ (A) := Homk(V,A) and on a morphism θ : A→ B of superalgebras by
Ṽ (θ) : Ṽ (A) → Ṽ (B), f 7→ θ ◦ f . Note Ṽ (A) is a free left A-supermodule
of rank n|n, with action defined by (a · f)(v) = a(f(v)). Indeed, we can
identify functions in Ṽ (A) with row vectors so that

f ←→ (f(v1), . . . , f(vn), f(v′1), . . . , f(v′n)).

Now right multiplication defines a right action of G(A) on Ṽ (A) by A-
supermodule automorphisms for each A. Hence we have a right action ρ :
Ṽ ×G→ Ṽ of G on the superscheme Ṽ . There is a G-equivariant morphism
J̃ : Ṽ → Ṽ , defined by J̃(f)(v) = (−1)f̄f(J(v)) for each v ∈ V, f ∈ Ṽ (A)
and each superalgebra A.
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At last we can introduce the flag superscheme Xγ corresponding to a
composition γ = (γ1, . . . , γs) of n. Let di = γ1 + · · ·+ γi for short. Given a
superalgebra A, a J-invariant γ-flag in Ṽ (A) means a chain (f1 ⊆ · · · ⊆ fs)
of J-invariant direct summands of the free A-supermodule Ṽ (A), where each
fi has rank di|di as a projective A-supermodule. Let Xγ denote the functor
mapping a superalgebra A to the set Xγ(A) of all such J-invariant γ-flags
in Ṽ (A). For a morphism θ : A → B, Xγ(θ) : Xγ(A) → Xγ(B) is the map
induced by composing with θ.

The right action of G on Ṽ induces a right action ρ : Xγ ×G→ Xγ of G
on Xγ . Let fγ = (f1 ⊆ · · · ⊆ fs) ∈ Xγ(k) denote the standard γ-flag, where
fi is the direct summand of Ṽ (k) = Homk(V, k) consisting of all functions
annihilating vdi+1, . . . , vn, v′di+1, . . . , v

′
n. Note that stabGfγ = Pγ , i.e. Pγ(A)

is the stabilizer in G(A) of the canonical image of fγ in Xγ(A) for each
superalgebra A. We get a corresponding orbit map

(11) πγ : G→ Xγ

defined for each superalgebra A and g ∈ G(A) by πγ(g) := fγ · g, which is
constant on right Pγ(A)-cosets in G(A) for each A. In fact, according to a
result of Manin, πγ : G→ Xγ is the quotient of G by the parabolic subgroup
Pγ :

Theorem 3.3. πγ : G → Xγ satisfies the properties (Q1)–(Q6) from the
previous section.

The properties (Q4) and (Q6) hold because the underlying even scheme
Xγ,ev is precisely the usual flag variety of GL(n). For the remaining proper-
ties, the main step is to show that Xγ really is a superscheme, for which we
refer to [12, ch.4, §3] and [13, §3.1]. One can also give a proof directly in
the functorial language that Xγ is a superscheme along the lines of the ar-
guments in [7, I, §1, 3.13], by constructing an affine open cover and checking
directly that Xγ is local in the sense of [7, I, §1, 3.11]. We just describe the
construction of the affine open cover here; all the other properties claimed
follow easily given this.

Let eγ = (e1 ⊆ · · · ⊆ es) be the J-invariant γ-flag in the vector superspace
V with ei = span{v1, . . . , vdi

, v′1, . . . , v
′
di
}. Let U1 denote the subfunctor of

Xγ defined by

U1(A) =

{
(f1 ⊆ · · · ⊆ fs) ∈ Xγ(A)

∣∣∣∣ fi is a complement to
anneV (A)

(ei) in Ṽ (A)

}
for each superalgebra A. Then, U1 is an open subfunctor of Xγ , π−1

γ (U1)
is the big cell PγU+

γ = Ωγ ⊂ G (see Lemma 3.2), and the restriction of πγ

to U+
γ gives an isomorphism U+

γ
∼→ U1. It follows that for any w ∈ W , the

translate Uw := U1 · w−1 is isomorphic to U+
γ , hence it is a decomposable
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open affine subfunctor of Xγ . For each A that is a field, the {Uw(A)|w ∈W}
cover Xγ(A). Moreover, Uw = Uw′ if and only if wWγ = w′Wγ . Hence

(12) {Uw | w ∈W γ}

is the desired affine open cover of Xγ , where W γ denotes the set of minimal
length W/Wγ-coset representatives.

4. Euler characteristics and Schur’s P -functions

Now we combine the results of the previous two sections. Continue with
the notation of §3. Let λ =

∑n
i=1 λiεi ∈ X+

p (T ). Gathering together equal
parts, we can write (λ1, . . . , λn) = (aγ1

1 , aγ2
2 , . . . , aγs

s ) with a1 > a2 > · · · > as

and
∑s

i=1 γi = n. We thus obtain from λ a composition γ(λ) := (γ1, . . . , γs)
of n. Schur’s P -function pλ is defined by:

(13) pλ =
∑

w∈W γ(λ)

w

xλ
∏

1≤i<j≤n
λi>λj

xi + xj

xi − xj

 .

This is the definition from [11, III(2.2)] with t there equal to −1, compare
[11, III.8] (actually, Macdonald only describes the case when all λi ≥ 0,
but everything easily extends to λi ∈ Z). For any λ ∈ X(T ), let aλ =∑

w∈W sgn(w)wxλ. Writing ρ =
∑n

i=1(n − i)εi ∈ X+(T ), aρ is the Weyl
denominator and equals

∏
1≤i<j≤n(xi − xj) ([11, I.3]). The classical Schur

function sλ can then be defined for arbitrary λ ∈ X(T ) by sλ := aλ+ρ/aρ.

Lemma 4.1. For λ ∈ X+
p (T ),

(i) pλ =
∑

w∈W

sgn(w)w

xλ+ρ
∏

1≤i<j≤n
λi>λj

(1 + x−1
i xj)


/ ∏

1≤i<j≤n

(xi − xj);

(ii) pλ =
∑

S⊆R+−R+
γ(λ)

sλ−
P

S .

Proof. (i) The given expression equals

∑
w∈W

w

{
xλ+ρ

∏
λi>λj

(1 + x−1
i xj)∏

i<j(xi − xj)

}
=

∑
w∈W

w

xλ
∏

1≤i<j≤n
λi>λj

xi + xj

xi − xj

∏
1≤i<j≤n

λi=λj

xi

xi − xj

 .
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Now [11, III(1.4)] with t = 0 shows that
∑

w∈W w
{∏

i<j
xi

xi−xj

}
= 1. The

conclusion now follows on observing that w ∈Wγ(λ) fixes xλ
∏

λi>λj

(xi+xj)
(xi−xj)

.

(ii) We note that∏
λi>λj

(1 + x−1
i xj) =

∑
S⊆R+−R+

γ(λ)

x−
P

S .

Now (ii) follows immediately using (i). �

Schur’s P -functions arise naturally for us as certain Euler characteristics.
Suppose that λ ∈ X+

p (T ), and define γ = γ(λ) as above. By Lemma 3.1, we
can view u(λ) as a Pγ-supermodule. For any i ≥ 0, define

(14) H i(λ) := RiindG
Pγ

u(λ).

We note that indG
Bu(λ) ' indG

Pγ
(indPγ

B u(λ)) = indG
Pγ

u(λ) by transitivity of
induction, i.e. the new definition of H0(λ) agrees with the old one from
(10).

By Theorem 3.3, the flag superscheme Xγ is the quotient of G by Pγ . So
we also have that

(15) H i(λ) = H i(Xγ ,L (u(λ))),

invoking Corollary 2.4. Moreover, as in the proof of Corollary 2.8, Grothendieck’s
vanishing theorem and Serre’s finiteness theorem imply:

Lemma 4.2. Each H i(λ) is finite dimensional, and is 0 for i > dim Xγ(λ).

So we obtain a well-defined element of the character group of G:

(16) Eλ :=
∑
i≥0

(−1)ich H i(λ) ∈ Z[x±1
1 , . . . , x±n

n ]W .

We can compute these explicitly using Corollary 2.8:

Theorem 4.3. For λ ∈ X+
p (T ), Eλ = 2b(hp′ (λ)+1)/2cpλ.

Proof. Let γ = γ(λ), P = Pγ . For G = Q(n), it is obvious that

(Lie(G)/Lie(P ))∗1̄ ' Π(Lie(Gev)/Lie(Pev))∗

as a Gev-supermodule. So Corollary 2.8 tells us that∑
i≥0

(−1)ich H i(λ) =
∑
i≥0

(−1)ich RiindGev
Pev

{∧
(Lie(Gev)/Lie(Pev))∗ ⊗ u(λ)

}
.

We note that for any Pev-module M , RiindGev
Pev

M ∼= RiindGev
Bev

M by [9, II.4.11]
and the tensor identity. Since Euler characteristic is additive on short exact
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sequences, it therefore suffices to determine the composition factors of the
Bev-module

∧
(Lie(Gev)/Lie(Pev))∗ ⊗ u(λ): its character is

dim u(λ)
∑

S⊆R+−R+
γ

xλ−
P

S .

By Weyl’s character formula [9, II.5.10],
∑

i≥0 ch RiindGev
Bev

kµ = sµ. So∑
i≥0

ch H i(λ) = dim u(λ)
∑

S⊆R+−R+
γ

sλ−
P

S .

Now we are done using Lemma 4.1(ii), recalling finally that dim u(λ) =
2b(hp′ (λ)+1)/2c. �

For λ ∈ X+
p (T ), set Lλ := ch L(λ). The

(17) {Lλ | λ ∈ X+
p (T )}

form a Z-basis for the character group of G. So we can write

(18) Eλ =
∑

µ∈X+
p (T )

dλ,µLµ

for dλ,µ ∈ Z. The resulting integer matrix D = (dλ,µ)λ,µ∈X+
p (T ) is the

decomposition matrix of G. By Theorem 4.3, Eλ equals xλ + (∗) where
(∗) is a linear combination of xµ for µ < λ, and similarly Lλ has this form.
So we have that dλ,λ = 1 and dλ,µ = 0 if µ 6≤ λ. Hence, D is a unitriangular
matrix if rows and columns are ordered in some way refining dominance,
and in particular

(19) {Eλ | λ ∈ X+
p (T )}

gives us another natural basis for the character group of G. If p = 0, the
decomposition matrices are known explicitly, see [1]. For some examples of
decomposition matrices in positive characteristic, see the tables at the end
of the article.

We record here one other consequence of Theorem 2.7, giving complete
information about the characters of all RiindG

Bu(λ) in the case G = Q(2):

Lemma 4.4. Suppose that G = Q(2) and λ ∈ X(T ).
(i) For λ ∈ X+

p (T ),

ch indG
Bu(λ) = 2b(hp′ (λ)+1)/2c(xλ + 2xλ−α + · · ·+ 2xw0λ+α + xw0λ).

(ii) For λ /∈ X+
p (T ), ch indG

Bu(λ) = 0.
(iii) ch R1indG

Bu(λ) = ch indG
Bu(w0λ).

In particular, indG
Bk ' k, R1indG

Bk ' Πk.
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Proof. Let X denote the quotient of G by B. By Theorem 2.7, the canoni-
cal filtration gives rise to a short exact sequence of quasi-coherent OXGev-
supermodules

(20) 0 −→ Lev(Πk−α ⊗ u(λ)) −→ L (u(λ)) −→ Lev(u(λ)) −→ 0,

where α = ε1 − ε2. Also we already know from the classification [3, The-
orem 6.11] that indG

Bu(λ) = 0 unless λ is p-strict and by Lemma 3.1 that
indG

Bu(λ) ' u(λ) in case λ1 = λ2 with p|λi. The lemma follows on com-
bining these facts, the long exact sequence arising from (20) and the known
cohomology of equivariant line bundles on P1. �

5. Serre duality and some examples

In this section, we wish to give a few simple examples. To do this, we
need to make use in addition of Serre duality for the flag superschemes Xγ .
We could not find any satisfactory reference for this, but see at least the
discussion in [14, §2]. Let us state the theorem:

Theorem 5.1. Let γ be a composition of n and N = |R+
γ |. There is a

natural isomorphism

(RiindG
Pγ

M)∗ ∼= RN−iindG
Pγ

(M∗)

for each finite dimensional Pγ-supermodule M .

Example 5.2. For λ ∈ X+
p (T ), define V (λ) := RN indG

Bu(w0λ), where N =
1
2n(n− 1). Then by Serre duality, V (λ) ∼= H0(−w0λ)∗, i.e. V (λ) is the uni-
versal highest weight module of [3, (6.14), (10.14)]. In particular, V (λ) has
a unique irreducible quotient isomorphic to L(λ), and ch V (λ) = ch H0(λ).

Example 5.3. Let us compute ch H0(ε1 − ε3) for G = Q(3). Let P1, P2

denote the minimal parabolic subgroups of G corresponding to the simple
roots ε1−ε2 and ε2−ε3 respectively. Denote the irreducible Pi-supermodule
of highest weight µ by Li(µ). We proceed in a number of steps.

(i) To start with, Serre duality gives H3(ε1 − ε3) ∼= H0(−ε1 + ε3)∗ which
is zero since −ε1 + ε3 /∈ X+

p (T ).
(ii) The Q(2)-supermodule H0(ε1) is irreducible, so indP1

B u(ε1 − ε3) ∼=
L1(ε1 − ε3). Hence,

(indP1
B u(ε1 − ε3))∗ ∼= L1(−ε2 + ε3) ∼= indP1

B u(−ε2 + ε3).

Applying Serre duality, we deduce that

R1indP1
B u(ε2 − ε3) ∼= indP1

B u(ε1 − ε3).

Since RiindP1
B u(ε2 − ε3) = 0 for i 6= 1, we have that

RiindG
P1

(R1indP1
B u(ε2 − ε3)) ∼= Ri+1indG

Bu(ε2 − ε3).
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Similarly,

RiindG
P1

(indP1
B u(ε1 − ε3)) ∼= RiindG

Bu(ε1 − ε3).

So we have shown that

Ri+1indG
Bu(ε2 − ε3) ∼= RiindG

Bu(ε1 − ε3)

for each i ≥ 0. As in step (i), the left hand side is zero for i = 2,
since −ε2 + ε3 /∈ X+

p (T ). Hence, H2(ε1 − ε3) = 0 and H1(ε1 − ε3) ∼=
R2indG

Bu(ε2 − ε3).
(iii) By Lemma 4.4, the character of the Q(2)-supermodule H0(ε1 − ε2)

is 2eε1−ε2 + 4 + 2eε2−ε1 . By decomposing the adjoint representation
of Q(2), the irreducible Q(2)-supermodule L(ε1 − ε2) has character
2eε1−ε2 + 2 + 2eε2−ε1 . Hence, we have the short exact sequence

0 −→ L2(ε2 − ε3) −→ indP2
B u(ε2 − ε3) −→ C −→ 0

of P2-supermodules, where C has character 2. Dualizing and applying
Serre duality gives the short exact sequence

0 −→ D −→ R1indP2
B u(−ε2 + ε3) −→ L2(ε2 − ε3) −→ 0

where D has character 2. Considering the resulting long exact se-
quences gives exact sequences

R2indG
P2

L2(ε2 − ε3) −→ R2indG
Bu(ε2 − ε3) −→ R2indG

P2
C

−→ R3indG
P2

L2(ε2 − ε3) = 0

and

0 = R3indG
Bu(−ε2 + ε3) −→ R2indG

P2
L2(ε2 − ε3) −→ R3indG

P2
D = 0.

Hence R2indG
Bu(ε2−ε3) ∼= R2indG

P2
C. Serre duality gives that the latter

has character 2, so we have shown ch H1(ε1 − ε3) = 2.
(iv) Hence, by the definition (18), ch H0(ε1 − ε3) = Eε1−ε3 + 2.

Example 5.4. Continue with G = Q(3) and let λ = 4ε1 + 3ε2 + 2ε3. In
characteristic 0, H0(λ) is irreducible by the linkage principle [3, Theorem
8.10], so its character is known by [21]: ch H0(λ) = Eλ. But in charac-
teristic 3, the Frobenius twist of determinant gives us a one dimensional
G-supermodule detp of character x3(ε1+ε2+ε3). So by the tensor identity [3,
(6.3)] and the previous example, we have that

ch H0(λ) = ch H0(ε1 − ε3)x3(ε1+ε2+ε3) = Eλ + 2x3(ε1+ε2+ε3).

This example shows that the characters of the induced modules H0(λ) are
not stable under reduction modulo p, even for strict λ.
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6. Linkage principle for Euler characteristics

In [3, §8], we introduced the notion of the residue content cont(λ) of λ ∈
X(T ). This is a tuple (c0, c1, . . . , c`) of integers, where ` = (p−1)/2 or∞ in
case p = 0. Rather than recall the definition here, we just give one example:
let n = 6, λ = (9, 7, 4, 0,−5,−8) and p = 5. We represent λ pictorially as

2 1 0 0 1 2 1 0
0 1 2 1 0

0
0
0

1
1
1

2
2
2

1
1
1

0
0

0
0

1
1 2 1

− +

Note in this example that ` = 2. The content of λ is (2, 4, 1), 2 counting
the total number of entries in the diagram equal to 0 (there being 7 in the
positive half of the diagram and 5 in the negative half), 4 counting the total
number entries equal to 1 and 1 counting the total number of entries equal
to 2.

In [3, Theorem 8.10], we showed that the composition multiplicity [H0(λ) :
L(µ)] is zero unless cont(µ) = cont(λ). We wish now to show moreover that
the decomposition number dλ,µ is zero unless cont(µ) = cont(λ). For the
proof, we will work in a rather larger category. Recall the definition of the
superalgebra of distributions Dist(G) from [3, §4]. It was constructed in
loc. cit. by reduction modulo p from the Kostant Z-form for the enveloping
superalgebra of the Lie superalgebra q(n, C), proving that it has a PBW
basis given by all monomials∏

1≤i6=j≤n

e
(ai,j)
i,j

(
e′i,j

)di,j
∏

1≤i≤n

(
hi

ai,i

) (
h′i

)di,i ,

for all ai,j ∈ Z≥0 and di,j ∈ {0, 1} (the product being taken in some arbitrary
but fixed order). For a Dist(G)-supermodule M and λ =

∑n
i=1 λiεi, we let

Mλ =
{

m ∈M

∣∣∣∣ (
hi

r

)
m =

(
λi

r

)
m for all i = 1, . . . , n, r ≥ 0

}
.

Also let Dist(B+) be the subalgebra of Dist(G) generated by Dist(H) and
all e

(r)
i,j , e′i,j for 1 ≤ i < j ≤ n, r ≥ 1. Let On be the category of all Dist(G)-

supermodules M satisfying the properties

(1) M is locally finite when viewed as a Dist(B+)-supermodule;
(2) M =

⊕
λ∈X(T ) Mλ.
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By [3, Corollary 5.7], we can identify the category of all G-supermodules
with the full subcategory Cn of On consisting of all M ∈ On that are locally
finite as Dist(G)-supermodules.

The basic objects in category On are the Verma supermodules

M(λ) := Dist(G)⊗Dist(B+) u(λ)

for each λ ∈ X(T ). By standard arguments, M(λ) has a unique irreducible
quotient denoted L(λ), and the supermodules {L(λ) | λ ∈ X(T )} form a
complete set of pairwise non-isomorphic irreducibles in category On. Note
L(λ) is finite dimensional if and only if λ ∈ X+

p (T ), when it agrees with the
G-supermodule denoted L(λ) earlier. The character of M(λ) is given by

(21) ch M(λ) = xλ
∏

1≤i<j≤n

1 + x−1
i xj

1− x−1
i xj

∈ Z[x±1
1 ][[x−1

i xj | 1 ≤ i < j ≤ n]].

Lemma 6.1. For λ, µ ∈ X(T ), [M(λ) : L(µ)] is zero unless cont(λ) =
cont(µ).

Proof. This follows immediately from [3, Lemmas 8.4, 8.9]. �

Lemma 6.2.
∏

1≤i<j≤n
1−x−1

i xj

1+x−1
i xj

∈ Z[[x−1
i xj | 1 ≤ i < j ≤ n]] is an infinite

linear combination of xµ’s for µ ≤ 0 with cont(µ) = (0, . . . , 0).

Proof. Working in Z[x±1
1 ][[x−1

i xj | 1 ≤ i < j ≤ n]], we can write the charac-
ter 1 of the trivial module as a linear combination of characters of Verma
supermodules. In view of (21) and Lemma 6.1, this expression only involves
Verma characters of the form ch M(µ) for µ ≤ 0 with cont(µ) = (0, . . . , 0).
Hence,

1 =
∑
µ≤0

wt(µ)=0

aµxµ
∏

1≤i<j≤n

1 + x−1
i xj

1− x−1
i xj


for some coefficients aµ ∈ Z. The lemma follows. �

Now we can prove the main result of the section.

Theorem 6.3. For λ, µ ∈ X+
p (T ), dλ,µ is zero unless cont(λ) = cont(µ).

Proof. Let λ =
∑n

i=1 λiεi ∈ X+
p (T ). Working in Z[x±1

1 ][[x−1
i xj | 1 ≤ i < j ≤

n]], we will show that Eλ can be written as a (possibly infinite) linear com-
bination of ch M(µ)’s for µ ∈ X(T ) with cont(µ) = cont(λ). The theorem
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follows from this and Lemma 6.1. By Theorem 4.3 and (13), we have that

Eλ = 2b(h(λ)+1)/2c
∑

w∈W γ(λ)

w

xλ
∏

1≤i<j≤n
λi=λj

1− x−1
i xj

1 + x−1
i xj

∏
1≤i<j≤n

1 + x−1
i xj

1− x−1
i xj


= 2b(h(λ)+1)/2c

∑
w∈W γ(λ)

(−1)`(w)xwλ
∏

1≤i<j≤n
λi=λj

1− x−1
wi xwj

1 + x−1
wi xwj

∏
1≤i<j≤n

1 + x−1
i xj

1− x−1
i xj

.

By Lemma 6.2, xwλ
∏

1≤i<j≤n,λi=λj

1−x−1
wi xwj

1+x−1
wi xwj

is a (possibly infinite) linear

combination of xµ’s for µ ≤ wλ with cont(µ) = cont(wλ) = cont(λ). Hence
recalling (21), Eλ is a (possibly infinite) linear combination of ch M(µ)’s for
µ ∈ X(T ) with cont(µ) = cont(λ). �
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Supplement: Some decomposition matrices for polynomial repre-
sentations in characteristic p = 3, n large.

d=3 (21) (3)

(21) 1 0

(3) 1 1

d=4 (31) (4)

(31) 1 0

(4) 1 1

d=5 (32) (41) (5)

(32) 1 0 0

(41) 0 1 0

(5) 1 0 1

d=6 (321) (32) (42) (51) (6)

(321) 1 0 0 0 0

(32) 1 1 0 0 0

(42) 2 2 1 0 0

(51) 1 2 1 1 0

(6) 1 1 0 1 1

d=7 (321) (421) (43) (52) (61) (7)

(321) 1 0 0 0 0 0

(421) 2 1 0 0 0 0

(43) 1 1 1 0 0 0

(52) 0 0 0 1 0 0

(61) 1 1 1 0 1 0

(7) 1 0 0 0 1 1

d=8 (322) (431) (521) (53) (62) (71) (8)

(322) 1 0 0 0 0 0 0

(431) 0 1 0 0 0 0 0

(521) 2 0 1 0 0 0 0

(53) 1 0 1 1 0 0 0

(62) 1 0 1 1 1 0 0

(71) 0 1 0 0 0 1 0

(8) 1 0 0 0 1 0 1



REPRESENTATIONS OF Q(n) 23

d=9 (3221) (33) (432) (531) (54) (621) (63) (72) (81) (9)

(3221) 1 0 0 0 0 0 0 0 0 0

(33) 1 1 0 0 0 0 0 0 0 0

(432) 0 0 1 0 0 0 0 0 0 0

(531) 2 2 1 1 0 0 0 0 0 0

(54) 1 2 0 1 1 0 0 0 0 0

(621) 2 2 0 1 0 1 0 0 0 0

(63) 1 3 0 1 1 1 1 0 0 0

(72) 1 6 1 1 1 2 2 1 0 0

(81) 1 4 1 0 0 1 2 1 1 0

(9) 1 2 0 0 0 1 2 0 1 1

d=10 (331) (4321) (432) (532) (541) (631) (64) (721) (73) (82) (91) (10)

(331) 1 0 0 0 0 0 0 0 0 0 0 0

(4321) 0 1 0 0 0 0 0 0 0 0 0 0

(432) 1 1 1 0 0 0 0 0 0 0 0 0

(532) 0 0 0 1 0 0 0 0 0 0 0 0

(541) 2 2 2 0 1 0 0 0 0 0 0 0

(631) 2 1 1 0 1 1 0 0 0 0 0 0

(64) 1 0 1 0 1 1 1 0 0 0 0 0

(721) 2 1 2 0 1 2 0 1 0 0 0 0

(73) 1 1 3 0 1 2 1 1 1 0 0 0

(82) 0 0 0 1 0 0 0 0 0 1 0 0

(91) 1 1 2 0 0 1 0 1 1 0 1 0

(10) 1 0 0 0 0 1 0 0 0 0 1 1

d=11 332 4321 5321 532 542 632 641 65 731 74 821 83 92 10 1 11

332 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4321 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

5321 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

532 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0

542 2 0 2 2 1 0 0 0 0 0 0 0 0 0 0

632 2 0 1 1 1 1 0 0 0 0 0 0 0 0 0

641 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

65 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0

731 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0

74 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0

821 2 0 1 2 1 2 0 0 0 0 1 0 0 0 0

83 1 0 1 3 1 2 0 1 0 0 1 1 0 0 0

92 1 0 1 2 0 1 0 0 0 0 1 1 1 0 0

10 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0

11 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1
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d=12 3321 34 4322 5321 5421 543 6321 632 642 651 62 732 741 75 831 84 921 93 10 2 11 1 12

3321 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4322 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5321 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5421 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

543 1 2 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6321 1 2 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

632 2 3 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

642 4 8 1 2 3 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0

651 1 4 1 0 1 1 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0

62 1 4 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0

732 3 6 1 1 2 1 2 2 1 0 0 1 0 0 0 0 0 0 0 0 0

741 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

75 2 6 0 0 2 2 2 2 1 2 0 1 0 1 0 0 0 0 0 0 0

831 2 6 1 1 2 2 3 2 1 1 0 1 0 0 1 0 0 0 0 0 0

84 1 4 0 1 2 3 3 2 1 2 0 1 0 1 1 1 0 0 0 0 0

921 2 2 0 1 1 1 2 0 0 0 0 0 0 0 1 0 1 0 0 0 0

93 1 3 0 1 1 2 2 1 0 1 1 0 0 0 1 1 1 1 0 0 0

10 2 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 2 0 1 0 0

11 1 1 2 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 1 0

12 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1
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