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GOOD GRADING POLYTOPES

JONATHAN BRUNDAN and SIMON M. GOODWIN

Abstract

Let g be a finite-dimensional semisimple Lie algebra over C and e ∈ g a nilpotent element. Elashvili and Kac
have recently classified all good Z-gradings for e. We instead consider good R-gradings, which are naturally
parameterized by an open convex polytope in a Euclidean space arising from the reductive part of the centralizer
of e in g. As an application, we prove that the isomorphism type of the finite W -algebra attached to a good
R-grading for e is independent of the particular choice of good grading.

1. Introduction

In this article, we construct isomorphisms between the finite W -algebras associated to a
nilpotent orbit in a complex semisimple Lie algebra. In some important special cases, these
finite W -algebras were first defined and studied in the PhD Thesis of Lynch [14], generalizing
a construction of Kostant [13]. The same algebras were later rediscovered by mathematical
physicists, who coined the name ‘finite W -algebra’ used here; see for example [2]. In full
generality, a finite W -algebra associated to an arbitrary nilpotent orbit was introduced only
recently by Premet [18], who views the resulting algebra as an enveloping algebra for the
Slodowy slice through the nilpotent orbit in question; see also [7].

To review a slight generalization of Premet’s definition in more detail, let g be a finite-
dimensional semisimple Lie algebra over C and let e ∈ g be nilpotent. An R-grading

Γ : g =
⊕
j∈R

gj

of g is called a good grading for e if e ∈ g2 and the linear map ad e : gj → gj+2 is injective for all
j � −1 and surjective for all j � −1. This definition originates in [12]. We call a good grading
integral if gj = 0 for all j /∈ Z and even if gj = 0 for all j /∈ 2Z; these are the most important
cases. A classification of all integral good gradings can be found in [6]. By [6, Theorem 2.1], even
good gradings correspond to nice parabolic subalgebras as have been independently classified
by Baur and Wallach [1].

Suppose Γ is a good grading for e, and let ( , ) denote the Killing form on g. The alternating
bilinear form 〈 , 〉 on g−1 defined by 〈x, y〉 = ([x, y], e) is non-degenerate. Choose a Lagrangian
subspace k of g−1 and define

m = k ⊕
⊕

j<−1

gj .

This is a nilpotent subalgebra of g and the map χ : m → C, x �→ (x, e) defines a representation
of m. The finite W -algebra associated to e and the good grading Γ may then be defined as the
endomorphism algebra

Hχ = EndU(g)(U(g) ⊗U(m) Cχ)op
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of the generalized Gelfand–Graev representation U(g) ⊗U(m) Cχ. A critical point for this
article is that the definition of the algebra Hχ is independent of the particular choice of
the Lagrangian subspace k. More precisely, given another Lagrangian subspace k′ of g−1, a
construction due to Gan and Ginzburg [7] (generalized slightly in Theorem 27 below) yields a
canonical isomorphism between the finite W -algebras Hχ and Hχ′ arising from the choices k
and k′, respectively.

As explained in detail in the introduction of [3], the algebras considered originally by Kostant
and Lynch in [13, 14] are naturally identified with the algebras Hχ defined here in the special
case that the good grading Γ is even, that is, when the good grading arises from a nice parabolic
subalgebra. In particular, in the even case, Hχ can actually be realized as a subalgebra of U(p),
where p is the parabolic subalgebra p =

⊕
i�0 gi. This makes the representation theory of Hχ

easier to study in the even case; for instance, it is clear in these cases that Hχ possesses many
finite-dimensional representations arising from restrictions of finite-dimensional U(p)-modules.
In general it is still an open problem to show even that Hχ has a 1-dimensional representation;
see [19, Conjecture 3.1].

On the other hand, the algebras studied by Premet [18, 19] and Gan and Ginzburg [7]
are the algebras Hχ defined here in the special case that the good grading Γ is the Dynkin
grading, that is, the grading defined by embedding e into an sl2-triple (e, h, f) and considering
the ad h-eigenspace decomposition of g. Representation theory of sl2 implies that the Dynkin
grading is always an integral good grading for e. The present definition of Hχ, involving
an arbitrary choice of good grading for e, gives a general framework containing both the
Kostant–Lynch construction and the Premet construction as special cases. Our main result
shows that in fact the algebra Hχ only depends up to isomorphism on e, not on the choice of
good grading for e.

Theorem 1. The finite W -algebras Hχ and Hχ′ associated to any two good gradings Γ
and Γ′ for e are isomorphic.

To prove the theorem, we need to make precise the physicists’ idea of deforming one
good grading into another. Say two good gradings Γ : g =

⊕
i∈R

gi and Γ′ : g =
⊕

j∈R
g′j are

adjacent if

g =
⊕

i−�j�i+

gi ∩ g′j,

where i− denotes the largest integer strictly smaller than i and i+ denotes the smallest integer
strictly greater than i. If Γ and Γ′ are adjacent, then by Lemma 26 below, there exist Lagrangian
subspaces k in g−1 and k′ in g′−1 such that

k ⊕
⊕
i<−1

gi = k′ ⊕
⊕

j<−1

g′j ,

that is, the nilpotent subalgebra m defined from Γ and k coincides with the nilpotent subalgebra
m′ defined from Γ′ and k′. With these choices, the algebras Hχ and Hχ′ corresponding to Γ and
Γ′ are simply equal. In view of the aforementioned result of Gan and Ginzburg (independence
of choice of Lagrangian subspace), Theorem 1 therefore follows if we can prove that any two
good gradings for e are linked by a chain of adjacent good gradings. The precise statement is
as follows.

Theorem 2. Given any two good gradings Γ and Γ′ for e, there exists a chain Γ1, . . . , Γn

of good gradings for e such that Γ is conjugate to Γ1, Γi is adjacent to Γi+1 for each
i = 1, . . . , n − 1, and Γn is conjugate to Γ′.



GOOD GRADING POLYTOPES Page 3 of 26

To prove Theorem 2, there is a simple geometric picture. To explain, we need a little more
notation. Pick an sl2-triple (e, h, f) containing e and let s = 〈e, h, f〉. Let t be a Cartan
subalgebra of g containing h and Φ ⊂ t∗ be the root system of g with respect to t. The
centralizers of e in g and t are denoted by ge and te, respectively.

Introduce the restricted root system Φe ⊂ t∗e, namely, the set of non-zero restrictions of roots
α ∈ Φ to te. We define the real form Ee of te by

Ee = {p ∈ te | α(p) ∈ R for all α ∈ Φe}.
Thus, Ee is a Euclidean space of dimension equal to the rank of the reductive part of ge.
For each α ∈ Φe, let d(α) denote the minimal dimension of an irreducible s-submodule of the
α-weight space of g with respect to te. The good grading polytope is then defined to be the
open convex polytope

Pe = {p ∈ Ee | α(p) < d(α) for all α ∈ Φe};
see Example 22 below for an example.

For p ∈ Pe, let Γ(p) denote the R-grading of g defined by the eigenspace decomposition
of the linear map ad(h + p) : g → g. By Theorem 20 below, this is a good R-grading for e,
and conversely every good R-grading for e is conjugate to Γ(p) for some p ∈ Pe. The affine
hyperplanes

Hα,k = {p ∈ Ee | α(p) = k}
for all α ∈ Φe and k ∈ Z cut the good grading polytope into finitely many connected alcoves.
In Theorem 25, we show that good gradings Γ(p) and Γ(p′) for p, p′ ∈ Pe are adjacent if and
only if p and p′ lie in the closure of the same alcove. Since one can get from any point in Pe

to any other by crossing finitely many walls, Theorem 2 follows easily from this description.
We note by Theorem 21 that there is a natural finite group We of symmetries of Pe such that

for p, p′ ∈ P(e), the good gradings Γ(p) and Γ(p′) are conjugate if and only if p and p′ lie in
the same We-orbit. Thus, We-orbits on Pe parameterize conjugacy classes of good R-gradings
for e. The group We of symmetries of Pe is actually a well-known group: we have

We
∼= NW (WJ )/WJ

where WJ is the parabolic subgroup of the Weyl group W corresponding to the minimal
Levi subalgebra of g containing e according to the Bala–Carter theory. We point out especially
Lemma 15 below which gives another sense in which these groups are ‘almost’ reflection groups,
different to that of Howlett [9].

We expect that the restricted root systems Φe investigated here will also play a role in the
representation theory of the finite W -algebras Hχ themselves.

The remainder of the paper is organized as follows. In Section 2 we define and study the
restricted root system associated to a Levi subalgebra l of g. In particular, we explain how
conjugacy classes of bases for the restricted root system are in one-to-one correspondence with
conjugacy classes of parabolic subalgebras p of g with Levi factor l. Next, in Section 3, we recall
some basic properties of the centralizer ge of e in g, and explain its relationship to the restricted
root system arising from the minimal Levi subalgebra of g containing e. In Section 4 we prove
that the conjugacy classes of good gradings for e are parameterized by the We-orbits on the
good grading polytope Pe. Then in Section 5 we consider the partition of Pe into alcoves and
prove that the good gradings parameterized by points p and p′ are adjacent if and only if p
and p′ lie in the closure of the same alcove. This completes the proofs of Theorems 1 and 2.
The final three sections give explicit descriptions of the good grading polytopes for classical
Lie algebras, following the approach of [6] closely.
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2. Restricted root systems

Let G be a semisimple algebraic group over C, T be a maximal torus, and B be a Borel
subgroup containing T . We write g, t and b for the corresponding Lie algebras. Recall some
standard notation:

- Φ ⊂ t∗ denotes the root system of g with respect to t;
- gα denotes the α-root space of g for each α ∈ Φ;
- Φ+ ⊆ Φ is the system of positive roots defined from b = t ⊕ ∑

α∈Φ+ gα;
- Δ = {α1, . . . , αr} is the corresponding set of simple roots;
- E is the R-lattice Rα1 ⊕ . . . ⊕ Rαr in t∗ and E∗ is the dual lattice in t;
- Hα = kerα is the hyperplane in E∗ defined by α ∈ Φ;
- A is the hyperplane arrangement {Hα | α ∈ Φ} in the real vector space E∗;
- W < GL(E∗) is the Weyl group generated by the simple reflections s1, . . . , sr, where si is

the reflection in the hyperplane Hi = Hαi .
Given, in addition, a subset J of {1, . . . , r}, we adopt some more standard notation for parabolic
objects associated to J :

- EJ denotes
∑

j∈J Rαj ⊆ E;
- ΦJ = Φ ∩ EJ is the closed subsystem of Φ generated by {±αj | j ∈ J} with base

ΔJ = {αj | j ∈ J};
- pJ = lJ ⊕ uJ denotes the standard parabolic subalgebra of g with Levi subalgebra lJ =

t ⊕ ∑
α∈ΦJ

gα and nilradical uJ =
∑

α∈Φ+\ΦJ
gα;

- PJ = LJUJ is the corresponding standard parabolic subgroup of G with standard Levi
subgroup LJ and unipotent radical UJ ;

- WJ denotes the parabolic subgroup of W generated by {sj | j ∈ J}.
Our final piece of notation is less standard: EJ ∼= (E/EJ)∗ denotes

⋂
j∈J Hj ⊆ E∗. Then,

A J = {Hα ∩ EJ | α ∈ Φ \ ΦJ}
is the restriction of the reflection arrangement A to the subspace EJ . It has been well studied
in the literature, starting from work of Orlik and Solomon [15]. For α ∈ E, we let αJ ∈ E/EJ

denote the restriction of α to EJ . In this section, we want to focus not on the restricted
arrangement A J , but rather on the restricted root system

ΦJ = {αJ | α ∈ Φ \ ΦJ}
consisting of all the non-zero restrictions of roots in Φ to EJ . The hyperplanes in A J are the
kernels of the restricted roots in ΦJ , so one can recover A J from ΦJ , but not vice versa. Note
that ΦJ is in general definitely not a root system in E/EJ in the usual sense.

From now on, we will always identify E with E∗ using the real inner product ( , ) induced by
the Killing form on g. We can then identify both the spaces EJ and E/EJ with the orthogonal
complement to EJ in E. Under this identification, the notation αJ becomes the orthogonal
projection of α ∈ E to EJ along the direct sum decomposition E = EJ ⊕ EJ . Let us also set
I = {1, . . . , r} \ J and m = |I| = dim EJ .

Lemma 3. For any α ∈ ΦJ , there exists α′ ∈ EJ such that α + α′ ∈ Φ and (α′, αj) � 0 for
all j ∈ J .

Proof. By the definition of ΦJ , the set {α′ ∈ EJ | α + α′ ∈ Φ} is non-empty. Pick an
element α′ from this set that is maximal in the dominance ordering. To complete the proof,
we just need to show that (α′, αj) � 0 for all j ∈ J . Otherwise, we can find j ∈ J such that
(α + α′, αj) = (α′, αj) < 0, but then α + (α′ + αj) ∈ Φ by [10, Lemma 9.4] contradicting the
maximality of the choice of α′.
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Lemma 4. If α, β ∈ ΦJ are distinct roots with (α, β) > 0, then α − β ∈ ΦJ too.

Proof. By the previous lemma, we can lift α and β to α + α′, β + β′ ∈ Φ, where α′, β′ ∈ EJ

satisfy (α′, αj) � 0 and (β′, αj) � 0 for all j ∈ J . In other words, α′ and β′ belong to the closure
of the same chamber in EJ ; hence (α′, β′) � 0. So

(α + α′, β + β′) = (α, β) + (α′, β′) > 0.

Also α + α′ = β + β′ since α = β. So [10, Lemma 9.4] implies that (α + α′) − (β + β′) ∈ Φ.
Hence, α − β ∈ ΦJ .

Lemma 5. If α, β ∈ ΦJ are proportional roots, then there exists γ ∈ ΦJ such that α and β
are both integer multiples of γ.

Proof. Let M = {c > 0 | cα ∈ ΦJ}. The previous lemma implies that if a and b are distinct
elements of M then |a − b| ∈ M too. It follows that any element of M is an integer multiple of
the smallest element.

Define a base of the restricted root system ΦJ to be a subset {βi | i ∈ I} of ΦJ such that
any element of ΦJ can be written as

∑
i∈I aiβi with either all ai ∈ Z�0 or all ai ∈ Z�0. Of

course any base for ΦJ is necessarily a basis for the vector space EJ . Any base {βi | i ∈ I}
partitions the restricted root system ΦJ into positive and negative roots, the positive ones
being the roots that are a positive linear combination of several βi. In order to construct bases
of ΦJ in the usual way, let γ ∈ EJ be regular. This means that γ does not lie on any of the
hyperplanes in A J , or equivalently, (α, γ) = 0 for all α ∈ ΦJ . Then we can define ΦJ (γ) to be
{α ∈ ΦJ | (α, γ) > 0}, and clearly ΦJ = ΦJ (γ) � (−ΦJ(γ)). Call α ∈ ΦJ (γ) decomposable if α
can be written as α = β1 + β2 for β1, β2 ∈ ΦJ (γ), and indecomposable if it is not decomposable.
Armed with Lemmas 4 and 5, one can prove the following theorem in essentially the same way
as for root systems; see for example [10, Theorem 10.1].

Theorem 6. Let γ ∈ EJ be regular. Then the set ΔJ (γ) of all indecomposable roots in
ΦJ (γ) is a base of ΦJ , and every base can be obtained in this manner.

Recall that the bases for the root system Φ are in natural bijective correspondence with
the set C of chambers in the hyperplane arrangement A, that is, the connected components of
E \ ⋃

A. Under this correspondence, the base {β1, . . . , βr} corresponds to the chamber

{α ∈ E | (α, βi) > 0 for all i = 1, . . . , r}.
Theorem 6 leads to a similar bijection between the set of bases of the restricted root system
ΦJ and the set C J of chambers in the hyperplane arrangement A J .

Corollary 7. There is a natural bijective correspondence between bases in ΦJ and
chambers in CJ , under which the base {βi | i ∈ I} corresponds to the chamber

{α ∈ EJ | (α, βi) > 0 for all i ∈ I}.

Proof. We just explain how to construct the inverse map from chambers to bases. Given a
chamber C ∈ CJ , pick any (necessarily regular) point γ ∈ C. Then, the image of C under the
inverse map is the base ΔJ(γ) for ΦJ. This is well defined, because if γ and γ′ belong to the same
chamber, then they lie on the same side of each hyperplane in A J , so ΦJ(γ) = ΦJ(γ′).
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There is another way to construct bases for the restricted root system ΦJ , by restricting
bases for Φ that contain bases for ΦJ .

Lemma 8. Suppose that {β1, . . . , βr} is a base for Φ such that {βj | j ∈ J} is a base for
ΦJ . Then, {βJ

i | i ∈ I} is a base for ΦJ , and every base for ΦJ can be obtained in this way.

Proof. Suppose first that {β1, . . . , βr} is a base for Φ such that {βj | j ∈ J} is a base for
ΦJ . Any α ∈ Φ \ ΦJ can be written as α =

∑r
j=1 ajβj , so that the aj are either all greater

than or equal to 0 or all less than or equal to 0. Since βj ∈ EJ for each j ∈ J , αJ =
∑

i∈I aiβ
J
i .

Hence, {βJ
i | i ∈ I} is a base for ΦJ .

To show that every base in ΦJ arises in this way, we think instead in terms of chambers. Let
C ∈ C be the chamber corresponding to the base {β1, . . . , βr}, still assuming that {βj | j ∈ J}
is a base for ΦJ . The closure C is equal to

{α ∈ E | (α, βi) � 0 for all i = 1, . . . , r},
while EJ = {α ∈ E | (α, βj) = 0 for all j ∈ J}. Hence, the intersection C ∩ EJ is equal to
{α ∈ EJ | (α, βJ

i ) � 0 for all j ∈ J}. This shows that (C ∩ EJ) \ ⋃
A J is the chamber in C J

corresponding to the base {βJ
i | i ∈ I}. We must prove that every chamber in C J can be

obtained in this way.
Suppose that {β1, . . . , βr} is a base for Φ that does not contain a base for ΦJ , and let

C be the corresponding chamber in C. We can find β =
∑r

j=1 ajβj ∈ ΦJ such that ai = 0
for some 1 � i � r with βi /∈ ΦJ . Take any α ∈ C ∩ EJ , so (α, β) = 0 and (α, βj) � 0 for all
j = 1, . . . , r. Since ai = 0, the equation

∑r
j=1 aj(α, βj) = 0 implies that (α, βi) = 0. Hence,

C ∩ EJ is contained in the hyperplane Hβi , and (C ∩ EJ ) \ ⋃
AJ = ∅. Since EJ \ ⋃

A J is
obviously covered by the sets (C ∩ EJ) \ ⋃

A J as C runs over all chambers in A, we have now
shown that every chamber in C J is equal to (C ∩ EJ) \ ⋃

A J for some chamber C in C such
that the corresponding base of Φ contains a base for ΦJ .

Lemma 9. Suppose that {β1, . . . , βr} and {γ1, . . . , γr} are two bases for Φ such that
{βj | j ∈ J} and {γj | j ∈ J} are bases for ΦJ . The resulting bases {βJ

i | i ∈ I} and {γJ
i | i ∈ I}

for ΦJ are equal if and only if there exists w ∈ WJ mapping {β1, . . . , βr} to {γ1, . . . , γr}.

Proof. Since WJ acts trivially on EJ , it is easy to see that if {β1, . . . , βr} and {γ1, . . . , γr}
are conjugate under WJ , then {βJ

i | i ∈ I} and {γJ
i | i ∈ I} are equal. Conversely, suppose that

{βJ
i | i ∈ I} and {γJ

i | i ∈ I} are equal. Recalling that WJ acts transitively on bases for ΦJ , we
can conjugate and reindex if necessary to assume that βj = γj for all j ∈ J and that βJ

i = γJ
i

for all i ∈ I. But then we can certainly write

βi = γi +
∑
j∈J

ai,jγj

for every i ∈ I and scalars ai,j ∈ R. Since βi is a root and the γi form a base for Φ, we get
ai,j � 0 for all i ∈ I and j ∈ J . However, also

γi = βi −
∑
j∈J

ai,jβj

for every i ∈ I, which implies that all ai,j � 0 too. Hence, βi = γi for each i ∈ I, and the original
bases for Φ are equal as required.

Theorem 10. There is a natural bijective correspondence between bases for Φ containing
ΔJ and bases for ΦJ , under which the base {βi, αj | i ∈ I, j ∈ J} for Φ corresponds to the base
{βJ

i | i ∈ I} for ΦJ .
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Proof. Since WJ acts simply transitively on bases for ΦJ , each WJ -orbit of bases
{β1, . . . , βr} for Φ containing a base for ΦJ has a unique representative that contains ΔJ .
Given this, the theorem is immediate from Lemmas 8 and 9.

We remark that bases for Φ containing ΔJ are also in bijective correspondence with
parabolic subgroups P of G that have LJ as a Levi factor, the base {βi, αj | i ∈ I, j ∈ J}
for Φ corresponding to the parabolic subgroup with Lie algebra generated by lJ and all gβi

(i ∈ I). So another way of thinking about Theorem 10 is that choosing a base for the restricted
root system ΦJ is equivalent to choosing a parabolic subgroup P of G with Levi factor LJ ,
just as choosing a base for Φ is equivalent to choosing a Borel subgroup of G containing T .

Corresponding to the base Δ of Φ, or to the standard parabolic subgroup PJ of G, we have
the standard base

ΔJ = {αJ | α ∈ Δ \ ΔJ} = {αJ
i | i ∈ I}

of ΦJ . Now suppose that K is a subset of {1, . . . , r} such that w · ΔK = ΔJ for some w ∈ W .
Since w · EK = EJ , w induces an isometry between EK and EJ which maps ΦK to ΦJ . So if
we apply w to the standard base ΔK of ΦK , we obtain a base w · ΔK for ΦJ . Clearly, all bases
for Φ containing ΔJ are of the form w · Δ for some K ⊂ {1, . . . , r} and some w ∈ W such that
w · ΔK = ΔJ . Therefore, by Theorem 10, all bases for ΦJ are of the form w · ΔK for suitable
w and K. This means that for most purposes, it is sufficient to work only with standard bases
ΔJ , providing one is prepared to allow the subset J of {1, . . . , r} to change.

Finally, we introduce the restricted Weyl group W J , namely, the stabilizer in W of the set
ΔJ . This is a well-known group, studied in particular by Howlett [9]; see also [4, § 10.4]. Clearly,
W J normalizes WJ and W J ∩ WJ = {1}. In fact, by [9, Lemma 2], we have WJW J = NW (WJ ),
so W J ∼= NW (WJ )/WJ . By Lemma 11 below, the natural action of W J on EJ is faithful, so
we can view W J as a subgroup of GL(EJ). In general, W J is not a reflection group, though
it is close to being one in a sense made precise in Howlett’s work; we will give an alternative
explanation of this phenomenon in the next section. Clearly, W J leaves the subset ΦJ ⊂ EJ

invariant; hence we get an induced action of W J on the set of bases for the root system ΦJ .
For the next lemma we require the following piece of notation: define KJ to be the set of

subsets K of {1, . . . , r} with the property that w · ΔK = ΔJ for some w ∈ W .

Lemma 11. For each K ∈ KJ , pick wK ∈ W such that wK · ΔK = ΔJ . Then,

{wK · ΔK | K ∈ KJ}
is a set of orbit representatives for the action of the restricted Weyl group W J on the set of
bases for ΦJ . Moreover, each orbit is regular, of size |W J |.

Proof. The set of all w ∈ W with the property that ΔJ ⊆ w · Δ is the disjoint
union

⋃
K∈KJ

W JwK . Since W acts simply transitively on bases for Φ, this means
that there are |KJ ||W J | different bases for Φ containing ΔJ , namely, the bases
{wwK · Δ | w ∈ W J , K ∈ KJ}. Applying Theorem 10, we deduce that there are |KJ ||W J |
different bases for ΦJ , namely, the bases {wwK · ΔK | w ∈ W J , K ∈ KJ}. The lemma follows.

This lemma immediately implies that the number of bases for the restricted root system ΦJ

is equal to |KJ ||W J |. Equivalently, by Corollary 7, the number of chambers in the hyperplane
arrangement A J is given by the formula∣∣C J

∣∣ = |KJ |
∣∣W J

∣∣ .
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This is a well-known identity due originally to Orlik and Solomon [15, (4.2)]. The hyperplane
arrangement A J is known to be a free arrangement; see [17, 5]. So by [16, § 4.6] its Poincaré
polynomial can be expressed as (1 + bJ

1 t) . . . (1 + bJ
mt) for exponents bJ

1 � . . . � bJ
m. This

factorization already appears in [15], and the exponents were computed there too in all cases.
It is well known that∣∣∣A J

∣∣∣ = bJ
1 + bJ

2 + . . . + bJ
m and

∣∣∣C J
∣∣∣ = (1 + bJ

1 )(1 + bJ
2 ) . . . (1 + bJ

m).

Moreover, if G is simple and m � 1 then the arrangement A J is irreducible; hence bJ
1 = 1 and,

assuming m � 2 too, bJ
2 � 2.

To conclude the section, we want to mention a theorem of Sommers [20] which gives a quick
way to determine the exponents bJ

i . For any α =
∑r

i=1 aiαi ∈ E, we let ht(α) denote
∑r

i=1 ai.
Let θ =

∑r
i=1 ciαi be the highest root in Φ, and recall that all other roots in Φ are strictly

smaller than θ in the dominance ordering. It follows easily that θJ is the unique highest root
in ΦJ . Now introduce the following plausible analogue of the Coxeter number for the restricted
root system ΦJ : let

hJ = min{ht(θK) + 1 | K ∈ KJ}.
Then, Sommers’ theorem says that an integer 1 � p < hJ belongs to the set {bJ

1 , . . . , bJ
m} of

exponents whenever it is prime to all the coefficients c1, . . . , cr of θ. Combined with the facts
mentioned in the previous paragraph, and also [9] (or Lemmas 14–15 below) from which the
orders of the groups W J can be computed, this always gives enough information to allow one
to completely determine the exponents.

Example 12. Take G to be a simple group of type E7; we write G = E7 for short. Label
the simple roots, which we identify with the vertices of the Dynkin diagram, as follows:

3 4 2 5 6 7
1

Take I = {1, 2} and J = {3, 4, 5, 6, 7}, so LJ is of type A3 + A2. The positive roots in ΦJ

corresponding to the standard base ΔJ = {αJ
1 , αJ

2 } are

{αJ
1 , αJ

2 , αJ
1 + αJ

2 , αJ
1 + 2αJ

2 , αJ
1 + 3αJ

2 , 2αJ
1 + 3αJ

2 , 2αJ
1 + 4αJ

2 }.
The restricted Cartan matrix with ij-entry

2(αJ
i , αJ

j )
(αJ

j , αJ
j )

for i, j = 1, 2

is the matrix (
2 − 24

7−1 2

)
.

It follows that αJ
1 ⊥ (αJ

1 + 2αJ
2 ). We get the picture of roots and orthogonal hyperplanes shown

in Figure 1.
There are twelve chambers in the hyperplane arrangement A J , the one corresponding to

the standard base being shaded. Since |KJ | = 3, there are three W J -orbits on chambers. In
fact, W J ∼= S2 × S2 is generated by the reflections in the horizontal and vertical axes. The
highest root θJ is 2αJ

1 + 4αJ
2 , but the Coxeter number hJ is 6 not 7: it comes from the highest

root 2αJ
1 + 3αJ

2 with respect to the non-standard base {αJ
1 + 3αJ

2 ,−αJ
2 }. The exponents are

1 and 5.
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−2αJ
1 − 4αJ

2

−αJ
1 − 2αJ

2

2αJ
1 + 4αJ

2

αJ
1 + 2αJ

2

αJ
1−αJ

1

−αJ
1 − αJ

2 −αJ
2

αJ
2 αJ

1 + αJ
2

αJ
1 + 3αJ

2 2αJ
1 + 3αJ

2

−2αJ
1 − 3αJ

2 −αJ
1 − 3αJ

2

Figure 1

3. Centralizers

We fix for the remainder of the article a nilpotent element e ∈ g; our basic references for
all matters concerning nilpotent orbits are [11, Chapters 1–5] and [4, Chapter 5]. We denote
the centralizer of e in G either by ZG(e) or by Ge for short. Similarly, we write zg(e) or
ge for its centralizer in g. By the Jacobson–Morozov theorem, we can embed e into an sl2-
subalgebra s = 〈e, h, f〉, so that [h, e] = 2e, [h, f ] = −2f and [e, f ] = h. Moreover, by a result of
Kostant, any other such triple (e, h′, f ′) is conjugate to (e, h, f) by an element of the connected
centralizer G◦

e .
The adh-eigenspace decomposition of g defines a Z-grading g =

⊕
j∈Z

gj which we call the
Dynkin grading. Let c = g0 and let C be the corresponding closed connected subgroup of G.
In other words, c and C are the centralizers of h in g and G, respectively. Also let r =

⊕
j>0 gj

and let R be the corresponding closed connected subgroup of G. It is well known that Ce is a
maximal reductive subgroup of Ge, with Lie algebra ce, and that Re is the unipotent radical
of Ge, with Lie algebra re. Moreover, Ge is the semidirect product Ce � Re, and ge is the
semidirect sum ce ⊕ re. Finally, the component group Ge/G◦

e is isomorphic to Ce/C◦
e .

Fix a maximal torus T of G contained in C and containing a maximal torus of Ce. An
important role is played by the centralizer te of e in the Lie algebra t of T . It is a Cartan
subalgebra of the reductive part ce of the centralizer ge. Let L be the centralizer of te in G, and
let l be the Lie algebra of L, that is, the centralizer of te in g. Thus, L is a Levi subgroup of
G, and the centre of l is equal to te. By the Bala–Carter theory, l is a minimal Levi subalgebra
of g containing e, and e is a distinguished nilpotent element of the derived subalgebra [l, l] of
l. Moreover, both h and f automatically lie in [l, l].

Lemma 13. The set of weights of te on ge equals the set of weights of te on g.

Proof. For α ∈ t∗e and i � 0, let L(α, i) denote the irreducible te ⊕ s-module of dimension
(i + 1) on which te acts by weight α. Decompose g as a te ⊕ s-module

g ∼=
⊕
α∈t∗e

⊕
i�0

m(α, i)L(α, i)
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for multiplicities m(α, i) � 0. The set of weights of te on g is

{α ∈ t∗e | m(α, i) = 0 for some i � 0}.
Since each L(α, i) contains a non-zero vector annihilated by e, this is also the set of weights of
te on ge.

We define Φe ⊂ t∗e to be the set of all non-zero weights of te on ge. The zero-weight space of
te on ge is of course the centralizer le of e in the Levi subalgebra l. So we have the following
analogue of the Cartan decomposition for centralizers:

ge = le ⊕
⊕

α∈Φe
i�0

ge(α, i)

where ge(α, i) = {x ∈ ge | [h, x] = ix and [t, x] = α(t)x for all t ∈ te}. This decomposition is
compatible with the decomposition ge = ce ⊕ re; indeed, we have

ce = te ⊕
⊕

α∈Φ◦
e

ge(α, 0), re = [l, l]e ⊕
⊕

α∈Φe
i>0

ge(α, i),

where Φ◦
e denotes the set of all α ∈ Φe such that ge(α, 0) is non-zero. The root system Φe

is a restricted root system in the sense of the previous section. To explain this, we need to
make one more important choice: let P be a parabolic subgroup of G such that L is a Levi
factor of P . Let U be the unipotent radical of P , and denote the corresponding Lie algebras
by p and u, so p = l ⊕ u. Pick a Borel subgroup B of G contained in P and containing T . The
choices of T and B determine a root system Φ for g and a base Δ = {α1, . . . , αr}, and we can
appeal to the set-up from the previous section. We then have L = LJ , U = UJ and P = PJ for
a unique subset J of {1, . . . , r}. The Euclidean space EJ from the previous section, henceforth
denoted Ee, is an R-form for the centre te of the Lie algebra l = lJ , and Lemma 13 shows that
Φe coincides with the restricted root system ΦJ ⊆ t∗e. The standard base ΔJ for ΦJ will be
denoted from now on by Δe, and we let Φ+

e denote the corresponding set of positive roots. In
the above root space decomposition of ge, we have pe = le ⊕ ue where

ue =
⊕

α∈Φ+
e

i�0

ge(α, i).

Indeed, as explained in the previous section, the choice of the parabolic P = LU is actually
equivalent to this choice Φ+

e of positive roots in Φe.
The objects Φe, Δe, Φ+

e , . . . introduced so far really only depend on J , with the exception
of Φ◦

e which does involve e itself: it is the root system of the reductive Lie algebra ce. Let Δ◦
e

denote the base of Φ◦
e associated to the positive system Φ◦

e ∩ Φ+
e . The dominant chamber of

the hyperplane arrangement A ◦
e in Ee associated to the root system Φ◦

e is

{α ∈ Ee | (α, β) > 0 for all β ∈ Δ◦
e}.

It is usually not a single chamber in the hyperplane arrangement Ae defined by Φe, though it
certainly contains the standard chamber {α ∈ Ee | (α, β) > 0 for all β ∈ Δe} of Ae.

This set-up gives a natural way to understand the restricted Weyl group W J ∼= NW (WJ )/WJ

from the previous section. Recall that this acts faithfully on the vector space Ee = EJ , so
extending scalars we can view W J as a subgroup of GL(te). Let

We = NGe(te)/ZGe(te),

also naturally a subgroup of GL(te). Using the decomposition Ge = Ce � Re and noting that
te ⊆ ce, one can easily see that

NGe(te) = NCe(te) � ZRe(te) and ZGe(te) = ZCe(te) � ZRe(te).
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Hence, we can also write We = NCe(te)/ZCe(te) as subgroups of GL(te).

Lemma 14. As subgroups of GL(te), we have We = W J .

Proof. We identify W with NG(T )/T = NG(t)/T . Take x ∈ W J represented by ẋ ∈ NG(T ).
Since x · ΔJ = ΔJ , ẋ normalizes L. Hence, ẋ · e is another distinguished nilpotent element of
[l, l]. We claim that there exists y ∈ L such that ẋ · e = y · e. To see this, it suffices by the
classification of distinguished nilpotent orbits in [l, l] to see that ẋ · e has the same labelled
Dynkin diagram as e. This is true because by inspection of the tables in [4], the labelled
Dynkin diagrams parameterizing distinguished nilpotent orbits of Levi subalgebras of simple
Lie algebras are invariant under graph automorphisms. Hence, we have found an element
y−1ẋ ∈ Ge which normalizes te and acts on te in the same way as x. This shows that W J ⊆ We.

Conversely, take x ∈ We represented by ẋ ∈ NGe(te). Recalling that L = ZG(te), we note that
ẋ certainly normalizes L too. Now ẋ · T is a maximal torus of L, so there exists y ∈ L such
that y−1ẋ ∈ NG(T ). Since ẋ normalizes l, it normalizes the centre te of l, while y centralizes
te. Hence, y−1ẋ normalizes te and it acts on te in the same way as x. So We ⊆ W J .

Note that We leaves Φe ⊂ Ee invariant; hence it acts on bases for Φe, or equivalently, on
the chambers of the hyperplane arrangement Ae, as described by Lemma 11. Let W ◦

e denote
the Weyl group of the reductive part ce of ge, so W ◦

e is the subgroup of GL(Ee) generated by the
reflections in the hyperplanes orthogonal to the simple roots Δ◦

e of the root system Φ◦
e of ce. Let

Ze denote the stabilizer in We of the dominant chamber {α ∈ Ee | (α, β) > 0 for all β ∈ Δ◦
e}.

Lemma 15. We have We = Ze � W ◦
e and Ze

∼= Ce/C◦
e ZCe(te), a quotient of the component

group Ce/C◦
e
∼= Ge/G◦

e.

Proof. Note that W ◦
e = NC◦

e
(te)/ZC◦

e
(te) ∼= NC◦

e
(te)ZCe(te)/ZCe(te). Hence, recalling that

We = NCe(te)/ZCe(te), we see that the reflection group W ◦
e is a normal subgroup of We. Now

one can see that We = Ze � W ◦
e ; see [9, Lemma 2]. Moreover, we have shown that

Ze
∼= We/W ◦

e
∼= NCe(te)/NC◦

e
(te)ZCe(te).

Now consider the natural map NCe(te) → Ce/C◦
e ZCe(te). It is surjective because for every

x ∈ Ce there exists y ∈ C◦
e with x · te = y · te. Its kernel is NC◦

e
(te)ZCe(te). Hence it induces an

isomorphism between Ze and Ce/C◦
e ZCe(te).

It follows from this and Lemma 11 that Ze has |KJ | orbits on the set of chambers of the
arrangement Ae that are contained in the dominant chamber

{α ∈ Ee | (α, β) > 0 for all β ∈ Δ◦
e},

and each orbit is regular. One can easily read off the structure of the group Ze from the tables
in [9] and [4]. For g simple, the group Ze is trivial, except in the following cases:

(i) g = sp2n(C) and λ has k > 0 distinct even parts of even multiplicity, in which case
Ze

∼= S2 × . . . × S2 (k times);
(ii) g = soN (C), at least one part of λ has odd multiplicity, and λ has k > 0 distinct odd

parts of even multiplicity, in which case Ze
∼= S2 × . . . × S2 (k times);

(iii) g = soN (C), all parts of λ are of even multiplicity, and λ has k > 1 distinct odd parts,
in which case Ze

∼= S2 × . . . × S2 ((k − 1) times);
(iv) g = F4 and e has Bala–Carter label Ã1, A2 or B2, in which case Ze

∼= S2;
(v) g = E6 and e has Bala–Carter label A2, in which case Ze

∼= S2;
(vi) g = E6 and e has Bala–Carter label D4(a1), in which case Ze

∼= S3;
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(vii) g = E7 and e has Bala–Carter label A2, A2 + A1, D4(a1) + A1, A3 + A2, A4, A4 + A1,
D5(a1) or E6(a1), in which case Ze

∼= S2;
(viii) g = E7 and e has Bala–Carter label D4(a1), in which case Ze

∼= S3;
(ix) g = E8 and e has Bala–Carter label A2, A2 + A1, 2A2, A3 + A2, A4, D4(a1) + A2,

A4 + A1, D5(a1), A4 + 2A1, D4 + A2, D6(a2), D6(a1), E6(a1), D5 + A2, D7(a2),
E6(a1) + A1 or D7(a1), in which case Ze

∼= S2;
(x) g = E8 and e has Bala–Carter label D4(a1) or D4(a1) + A1, in which case Ze

∼= S3.
In (i)–(iii), when g is classical, the partition λ = (1m12m2 . . .) denotes the Jordan type of e in
its natural representation.

Finally in this section, we wish to say a little more about the dimensions of the root spaces
ge(α, i) of ge for α ∈ Φe. Note that dim ge(α, i) is the same as the multiplicity m(α, i) from
the proof of Lemma 13. By the definition of ce, m(α, 0) is 1 or 0 according to whether α ∈ Φ◦

e

or not. The root multiplicities m(α, i) for i > 0 can often be greater than 1, and in fact can
be arbitrarily large for symplectic and orthogonal Lie algebras. For g = sln, the multiplicities
m(α, i) are always 1, and explicit calculations as described in the next paragraph show that
m(α, i) is always at most 3 for G simple of exceptional type. In general, the root space ge(α, i)
need not be a subalgebra of ge.

Let us explain exactly how to compute the root multiplicities m(α, i) from the root system
of G. Let I = {1, . . . , r} \ J , so that as in the previous section {αJ

i | i ∈ I} is the standard
base for the restricted root system ΦJ . Of course, the restriction αJ of a root α =

∑r
i=1 aiαi

is simply
∑

i∈I aiα
J
i , so it is easy to write down the set ΦJ explicitly given the root system of

g. Since L centralizes te, it does no harm to conjugate by an element of L to assume that the
distinguished sl2-triple (e, h, f) in [l, l] is in standard form, so that the values αj(h) for j ∈ J
are all either 0 or 2 as can be read off from the labelled diagram for the distinguished nilpotent
e ∈ [l, l] from [4]. Solving some linear equations, one can then uniquely determine the other
values αi(h) for i ∈ I, using the fact that h is orthogonal to te. Hence, we can compute all the
integers β(h) for β ∈ Φ. Now take α ∈ Φe. The formal character of the s-module arising from
the α-weight space of g with respect to te is then∑

β∈Φ:βJ=α

xβ(h).

By sl2-theory, this can be written uniquely as∑
i�0

m(α, i)(xi + xi−2 + . . . + x−i)

for integers m(α, i) � 0. These are the desired multiplicities. For exceptional groups, this
procedure is particularly effective, and we have implemented it in GAP [8] to quickly compute
all root multiplicities in all cases, though there does not seem to be a compact way to present
this information here. For classical groups, there is a different approach based on diagrams in
the plane called pyramids; this is described in Sections 6–8.

Example 16. Take G = E7 and e with Bala–Carter label A3 + A2. Continuing with the
notation from Example 12, we see that the values of αi(h) for i = 1, . . . , 7 are given by the
labelled Dynkin diagram

2 2 −5 2 2 2
0

From this, one can compute the root multiplicities m(α, i) by the method just explained. To
record these, we list for every α ∈ Φ+

e the sequence made up of the positive integers m(α, i) for
all i � 0: αJ

1 : 0; αJ
2 : 1, 3, 5; αJ

1 + αJ
2 : 1, 3, 5; αJ

1 + 2αJ
2 : 2, 2, 4, 6; αJ

1 + 3αJ
2 : 3; 2αJ

1 + 3αJ
2 : 3;

2αJ
1 + 4αJ

2 : 2. The reductive part Ce of the centralizer is of type A1 + T1, and Δ◦
e = {αJ

1 }.
Hence, the fundamental chamber is the right half plane in Figure 1 in Example 12, and W ◦

e
∼= S2
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is generated by the reflection in the vertical axis. The group Ze
∼= S2 is generated by the

reflection in the horizontal axis.

4. Good gradings

Continue with notation as in the previous section. In particular, we have fixed bases Δ =
{α1, . . . , αr} for Φ and Δe = {αJ

i | i ∈ I} for Φe. We often now represent an element c ∈ t
as a tuple (c1, . . . , cr) of complex numbers, where ci = αi(c). Of course, we think of this as a
labelling of the vertices of the Dynkin diagram. By a grading of g, we always mean an R-grading

Γ : g =
⊕
j∈R

gj

such that [gi, gj ] ⊆ gi+j . We say that the grading Γ is compatible with t if t ⊆ g0. Since every
derivation of g is inner, there exists a unique semisimple element c ∈ g defining Γ, that is,
so that gj is the j-eigenspace of ad c. The grading is compatible with t if and only if this
element belongs to t. In this way, gradings of g that are compatible with t are parameterized
by labelled Dynkin diagrams (c1, . . . , cr) with all labels ci ∈ R. Every semisimple element of g is
G-conjugate to an element of t, so every grading is G-conjugate to a grading that is compatible
with t. Finally, two elements of t are G-conjugate if and only if they are W -conjugate; hence
every grading of g is G-conjugate to a unique grading that is compatible with t and whose
labelled Dynkin diagram (c1, . . . , cr) has all labels ci ∈ R�0. We call this labelled diagram the
characteristic of the grading.

Now assume that Γ : g =
⊕

j∈R
gj is a good grading for e as defined in the introduction.

The proof of [6, Theorem 1.3] shows that ad e : gj → gj+2 is surjective if and only if
ad e : g−j−2 → g−j is injective. Hence, the conditions that ad e : gj → gj+2 is injective for all
j � −1 and that ad e : gj → gj+2 is surjective for all j � −1 in the definition of good grading
are in fact equivalent. So, Γ is a good grading for e ∈ g2 if and only if ge ⊆ ⊕

j>−1 gj .

Lemma 17. Let Γ be a grading of g with e ∈ g2. Then we have dim ge �
∑

−1�j<1 dim gj

with equality if and only if Γ is a good grading for e.

Proof. The discussion before the statement of the lemma implies that it can be proved in
the same way as [6, Corollary 1.3].

By a good characteristic, we mean the characteristic of a good grading for e. By the proof
of [6, Theorem 1.2], a good characteristic (c1, . . . , cr) always has the property that 0 � ci � 2
for all i = 1, . . . , r. We should observe that the original good grading Γ for e can be recovered
from its characteristic uniquely up to conjugacy by Ge; this means that good characteristics
parameterize Ge-conjugacy classes of good gradings for e. To see this, suppose that Γ and
Γ′ are two good gradings for e with the same characteristic. There certainly exists y ∈ G
such that y · Γ′ = Γ. So Γ is good both for e and for y · e. Let G0 be the set of all elements
of G that preserve the grading Γ, that is, G0 = {x ∈ G : x · gi = gi for all i ∈ R}. Lemma 18
below implies that y · e = z · e for some z ∈ G0. But then z−1y · Γ′ = Γ too, and z−1y ∈ Ge, as
required.

Lemma 18. If Γ is a good grading, the set of all elements e ∈ g2 such that Γ is a good
grading for e is a dense open orbit for the action of G0 on g2.

Proof. Suppose that Γ is a good grading for e and for e′. We have [e, g0] = g2. Hence,
dim G0 · e = dim g2, and G0 · e is dense open in g2. So is G0 · e′, so G0 · e and G0 · e′ have
non-empty intersection. Hence, G0 · e = G0 · e′.
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For the next lemma, we note that Ee is the R-form for te consisting of all p ∈ te such that
the eigenvalues of ad p on g are real. Also recall that the element h from our fixed sl2-triple
(e, h, f) belongs to t, since t was chosen originally to lie in c = zg(h).

Lemma 19. Every Ge-conjugacy class of good gradings for e has a representative Γ that
is compatible with t. Moreover, for any such Γ, we have h ∈ g0 and f ∈ g−2, and the element
c ∈ g defining the grading Γ is of the form c = h + p for some point p ∈ Ee.

Proof. Let Γ be any good grading for e. As in [6, Lemma 1.1], there exists an sl2-triple
(e, h′, f ′) with h′ ∈ g0 and f ′ ∈ g−2. This is conjugate to our fixed sl2-triple s = (e, h, f) by
an element x of G◦

e. On replacing Γ by x · Γ if necessary, we may therefore assume that h ∈
g0 and f ∈ g−2 already. Let c be the semisimple element of g defining the grading Γ. Since
[h, e] = [c, e] = 2e, the element p = c − h centralizes e. Since h ∈ g0, we have [h, c] = 0, so p is
a semisimple element of ce. Recalling that te is a Cartan subalgebra of ce, we can therefore
conjugate once more by an element of C◦

e to reduce to the situation where p ∈ te. But then
c = h + p belongs to t, and the grading Γ is compatible with t as required.

Now suppose that Γ is any good grading for e that is compatible with t. Let c be the element
of t defining the grading, so that [c, e] = 2e and [c, h] = 0, that is, h ∈ g0. This implies that
p = c − h centralizes e and h, and hence also f , so [c, f ] = [h, f ] = −2f and f ∈ g−2. Finally,
observe that p belongs to te, and hence to Ee since Γ is an R-grading.

Given any p ∈ Ee, let Γ(p) denote the grading of g defined by the semisimple element h + p.
For example, Γ(0) is the Dynkin grading. In general, the grading Γ(p) is certainly compatible
with t and the element e is in degree 2. However, it need not be a good grading for e.

Theorem 20. For p ∈ Ee, the grading Γ(p) is a good grading for e if and only if
|α(p)| < d(α) for all α ∈ Φ+

e , where d(α) = 1 + min{i � 0 | m(α, i) = 0}, that is, the minimal
dimension of an irreducible s-submodule of the α-weight space of g with respect to te.

Proof. Recall that Γ(p) : g =
⊕

j∈R
gj is a good grading for e if and only if ge ⊆ ⊕

j>−1 gj.
Let g =

⊕
α∈Φe∪{0}

⊕
i�0 m(α, i)L(α, i) be the decomposition of g as a te ⊕ s-module, as in the

proof of Lemma 13. Note that h + p acts on the highest weight vector of L(α, i) as the scalar
α(p) + i. Putting these things together, we find that Γ(p) is a good grading for e if and only if
α(p) + i > −1 whenever m(α, i) = 0. Since Φe = Φ+

e � (−Φ+
e ), the theorem follows easily.

Let Pe denote the set of all p ∈ Ee such that Γ(p) is a good grading for e. Since Φ+
e spans

E∗
e , Theorem 20 shows in particular that Pe is an open convex polytope in the real vector

space Ee. It can be computed explicitly from information about the root multiplicities m(α, i);
see the discussion before Example 16. We call it the good grading polytope corresponding to e.
By Lemma 19, the map p �→ Γ(p) gives a bijection between Pe and the set of all good gradings
for e that are compatible with t. The next theorem describes exactly when the good gradings
Γ(p) and Γ(p′) for e are conjugate, for points p, p′ ∈ Pe. Recall that this is so if and only if
they have the same characteristic.

Theorem 21. For p, p′ ∈ Pe, the good gradings Γ(p) and Γ(p′) are G-conjugate if and
only if p and p′ are We-conjugate.

Proof. Suppose that the good gradings Γ(p) : g =
⊕

i∈R
gi and Γ(p′) : g =

⊕
j∈R

g′j are G-
conjugate. Since they are both good gradings for e, they are already conjugate under the
centralizer Ge, as we explained earlier. So we can find x ∈ Ge such that x · (h + p) = h + p′.
Since h + p′ lies in both t and in x · t, it centralizes te and x · te, so both te and x · te lie in g′0.
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They also clearly both lie in ge; hence te and x · te are Cartan subalgebras of ge ∩ g′0. Let G′
0 be

the subgroup of G consisting of all elements that preserve the grading Γ(p′). Then we deduce
that there exists an element y ∈ Ge ∩ G′

0 such that y · te = x · te. Hence, y−1x · (h + p) = h + p′

and y−1x ∈ NGe(te). Since y−1x normalizes te, it normalizes l, and hence [l, l]. So, y−1x · h = h′

for some h′ ∈ [l, l], and h + p′ = y−1x · (h + p) = h′ + y−1x · p. This shows that h = h′ and
y−1x · p = p′ already. Hence, p and p′ are We-conjugate.

Conversely, suppose that p and p′ are We-conjugate. Then, recalling that

We = NCe(te)/ZCe(te),

we can find x ∈ NCe(te) with x · p = p′. Since x lies in Ce, it centralizes h, so x · (h + p) = h + p′.
Hence, Γ(p) and Γ(p′) are conjugate.

We finally introduce the affine hyperplanes

Hα,k = {p ∈ Ee | α(p) = k}
for each α ∈ Φ+

e and k ∈ Z. The significance of these will be discussed in detail in the next
section. We just want to point out here that the integral good gradings for e that are compatible
with t are parameterized by the points p ∈ Pe such that α(p) ∈ Z for all α ∈ Φ+

e . In other
words, Γ(p) is an integral grading if and only if p lies on the same number of the affine
hyperplanes Hα,k for α ∈ Φ+

e and k ∈ Z as the origin (which corresponds to the Dynkin
grading). Actually, it is often the case that the Dynkin grading is the only integral good
grading, as is well explained by [6, Corollary 1.1].

Example 22. Continue with G = E7 and e having Bala–Carter label A3 + A2, with
notation as in Examples 12 and 16. In Example 16, we computed all the root multiplicities
m(α, i). Hence, according to Theorem 20, the good grading polytope Pe is the subspace of Ee

defined by the inequalities

|αJ
1 (p)| < 1, |αJ

2 (p)| < 2, |(αJ
1 + αJ

2 )(p)| < 2, |(αJ
1 + 2αJ

2 )(p)| < 3,

|(αJ
1 + 3αJ

2 )(p)| < 4, |(2αJ
1 + 3αJ

2 )(p)| < 4, |(2αJ
1 + 4αJ

2 )(p)| < 3.

These are equivalent just to the inequalities |αJ
1 (p)| < 1 and |(αJ

1 + 2αJ
2 )(p)| < 3

2 , so the good
grading polytope can be represented as the interior of the rectangle in Figure 2 (on the same
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axes as in Example 12 but with a different scale). We have also indicated on the diagram the
affine hyperplanes that intersect with Pe. From this, we see that no other point of Pe lies
on as many affine hyperplanes as the origin. So the only integral good grading for e is the
Dynkin grading, which is consistent with the classification of integral good gradings from [6]
in this case.

5. Alcoves and adjacencies

Recall from the introduction that a pair Γ : g =
⊕

i∈R
gi and Γ′ : g =

⊕
j∈Z

g′j of good
gradings for e are adjacent if g =

⊕
i−�j�i+ gi ∩ g′j . Note this means in particular that the

gradings Γ and Γ′ are compatible with each other, that is, the semisimple elements of g that
define the gradings Γ and Γ′ commute. Moreover,

⊕
i,j�0 gi ∩ g′j is a parabolic subalgebra

of g with Levi factor g0 ∩ g′0. So we can find an element x ∈ G such that x · t ⊆ g0 ∩ g′0 and
x · b ⊆ ⊕

i,j�0 gi ∩ g′j. The characteristics (c1, . . . , cr) and (c′1, . . . , c
′
r) of the gradings Γ and Γ′

can then be read off simultaneously from the equations x · gαi ⊆ gci ∩ gc′i for all i = 1, . . . , r.
We say that two good characteristics (c1, . . . , cr) and (c′1, . . . , c

′
r) are adjacent if they are the

characteristics of a pair of adjacent good gradings Γ and Γ′ for e. If we are given just a pair
(c1, . . . , cr) and (c′1, . . . , c′r) of adjacent good characteristics, we can recover the pair Γ and Γ′ of
adjacent good gradings for e from which they were defined uniquely up to conjugation by Ge.
To see this, the previous paragraph implies that Γ and Γ′ can be obtained by simultaneously
conjugating the two gradings defined by declaring that each g±αi is in degree ±ci or in degree
±c′i, respectively, by some element x ∈ G. So we just need to show that if Λ and Λ′ are another
pair of good gradings for e with y · Λ = Γ and y · Λ′ = Γ′ for some y ∈ G, then in fact Λ and
Λ′ are already conjugate to Γ and Γ′ by an element of Ge. For this, note that Γ and Γ′ are
good gradings both for e and for y · e. So by Lemma 23 below, there exists an element z ∈ G
preserving both gradings Γ and Γ′ with z · e = y · e. But then z−1y · Λ = Γ and z−1y · Λ′ = Γ′,
and z−1y ∈ Ge, as required.

Lemma 23. Let Γ and Γ′ be adjacent good gradings for e. Let G0 and G′
0 be the subgroups

of G consisting of all elements that preserve the gradings Γ and Γ′, respectively. The set of all
elements e′ of g2 ∩ g′2 such that both Γ and Γ′ are good gradings for e′ is a dense open orbit
for the action of the group G0 ∩ G′

0.

Proof. Let g<j denote
⊕

i<j gi. Define g>j , g′<j and g′>j similarly. Since the map

ad e : g0 → g2

is surjective and preserves the direct sum decompositions

g0 = (g0 ∩ g′<0) ⊕ (g0 ∩ g′0) ⊕ (g0 ∩ g′>0) and g2 = (g2 ∩ g′<2) ⊕ (g2 ∩ g′2) ⊕ (g2 ∩ g′>2),

we have [g0 ∩ g′0, e] = g2 ∩ g′2. Now argue as in the proof of Lemma 18.

This shows that adjacent good characteristics parameterize Ge-conjugacy classes of adjacent
good gradings for e. In order to classify all adjacent good gradings, and hence all adjacent good
characteristics, in terms of the good grading polytope we use the following lemma.

Lemma 24. Let Γ and Γ′ be adjacent good gradings for e. Then there exists x ∈ G◦
e such

that both x · Γ and x · Γ′ are compatible with t.
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Proof. Note that e ∈ g2 ∩ g′2 by the definition of good grading. Arguing as in the proof of
[6, Lemma 1.1], working with the bigrading

g =
⊕
i,j∈Z

gi ∩ g′j

instead of the grading used there, one shows that there exists an sl2-triple (e, h′, f ′) with
h′ ∈ g0 ∩ g′0 and f ′ ∈ g−2 ∩ g′−2. Conjugating by an element of G◦

e if necessary, we may assume
that in fact h′ = h and f ′ = f , that is, h ∈ g0 ∩ g′0 and f ∈ g−2 ∩ g′−2 already. Now argue as
in the proof of Lemma 19 to show that t ⊆ g0 ∩ g′0.

Assume that Γ and Γ′ are adjacent good gradings for e. In view of Lemma 24, we can
conjugate by an element of G◦

e if necessary to assume that Γ and Γ′ are both compatible with
t. Then, Γ = Γ(p) and Γ′ = Γ(p′) for points p, p′ ∈ Pe. In this way, the problem of determining
all conjugacy classes of pairs of adjacent good gradings for e reduces to describing exactly when
Γ(p) and Γ(p′) are adjacent. To do this, recall the affine hyperplanes {Hα,k | α ∈ Φ+

e , k ∈ Z}
introduced at the end of the previous section. We refer to the connected components of

Ee \
⋃

α∈Φ+
e

k∈Z

Hα,k

as alcoves. Note that the closure of Pe is the union of the closures of finitely many alcoves.

Theorem 25. Let p, p′ ∈ Pe. Then, Γ(p) and Γ(p′) are adjacent if and only if p and p′

belong to the closure of the same alcove.

Proof. By definition, gα lies in the degree α(h) + α(p) piece of the grading Γ(p), for each
α ∈ Φ. Since α(h) is always an integer, it follows that Γ(p) and Γ(p′) are adjacent if and only if
α(p)− � α(p′) � α(p)+ for all α ∈ Φ. Equivalently, p and p′ belong to the closure of the same
alcove.

Theorems 20 and 25 combine to prove Theorem 2 from the introduction. In the remainder
of the section, we want to explain the remaining ingredients needed to deduce Theorem 1
from it, as we outlined in the introduction. The first step is accomplished by the following
lemma. Recall from the introduction that 〈 , 〉 is the skew-symmetric bilinear form defined by
〈x, y〉 = ([x, y], e).

Lemma 26. Let Γ : g =
⊕

i∈R
gi and Γ′ : g =

⊕
j∈R

gj be adjacent good gradings for e.
Then there exist Lagrangian subspaces k of g−1 and k′ of g′−1 (both with respect to the form
〈 , 〉) such that

k ⊕
⊕
i<−1

gi = k′ ⊕
⊕

j<−1

g′j.

Proof. In the notation from the proof of Lemma 23, we have

g−1 = ((g−1 ∩ g′<−1) ⊕ (g−1 ∩ g′>−1)) ⊥ (g−1 ∩ g′−1),
g′−1 = ((g<−1 ∩ g′−1) ⊕ (g>−1 ∩ g′−1)) ⊥ (g−1 ∩ g′−1),

where the ⊥ are with respect to the form 〈 , 〉. Hence, the restriction of 〈 , 〉 to g−1 ∩ g′−1 is
non-degenerate. Let k′′ be a Lagrangian subspace of g−1 ∩ g′−1. Then set k = k′′ ⊕ (g−1 ∩ g′<−1)
and k′ = k′′ ⊕ (g<−1 ∩ g′−1). This does the job in view of the definition of adjacency.
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It just remains to indicate how to adapt the argument of Gan and Ginzburg [7] to our
slightly more general setting. For an integer d � 1, we define a d-good grading for e to be a
Z-grading g =

⊕
j∈Z

gj with e ∈ gd, such that ad e : gj → gj+d is injective for j � − 1
2d and

surjective for j � − 1
2d. Given any good R-grading Γ for e in our old sense, it is easy to see that

one can always replace Γ by a good Q-grading without changing e ∈ g2 or either of the spaces
g−1 or

⊕
j<−1 gj , which is all that matters for the construction of finite W -algebras. In turn,

since g is finite dimensional, any good Q-grading for e ∈ g2 can be scaled by a sufficiently large
integer d so that it becomes a 2d-good grading for e ∈ g2d in the new sense. This reduces to
the situation that Γ : g =

⊕
j∈Z

gj is a 2d-good grading for e.
Next let k be any isotropic subspace of g−d, and let k⊥ ⊆ g−d be its annihilator with

respect to the form 〈 , 〉. Let m = k ⊕ ⊕
i<−d gi and n = k⊥ ⊕ ⊕

j<−d gj . Note that χ : m → C,
x �→ (x, e) is a representation of m. Set Qk = U(g) ⊗U(m) Cχ = U(g)/Ik, where Ik is the left ideal
of U(g) generated by all {x − χ(x) | x ∈ m}. Since Ik is stable under the adjoint action of n, we
get an induced action of n on Qk, by x · (u ⊗ 1χ) = [x, u] ⊗ 1χ for x ∈ n and u ∈ U(g). Let Hk be
the space Qn

k of n-fixed points with respect to this action. It has a well-defined algebra structure
defined by (u ⊗ 1χ)(v ⊗ 1χ) = (uv) ⊗ 1χ, for u, v ∈ U(g) such that u ⊗ 1χ, v ⊗ 1χ ∈ Qn

k . Now
we can formulate the slight generalization of Gan and Ginzburg’s theorem that we need here.

Theorem 27. Let k ⊆ k′ be two isotropic subspaces of g−d, and define the corresponding
algebras Hk and Hk′ as above. The natural map Qk → Qk′ induced by the inclusion k ↪→ k′

restricts to an algebra isomorphism Hk → Hk′ .

If we take k = {0} and k′ and k′′ to be any two Lagrangian subspaces of g−d, this theorem
gives isomorphisms from Hk to both Hk′ and Hk′′ . Composing one with the inverse of the other,
we get a canonical isomorphism between Hk′ and Hk′′ . In turn, by the Frobenius reciprocity
argument explained in the introduction of [3], Hk′ is naturally isomorphic to the finite W -
algebra Hχ′ from the introduction defined from the Lagrangian subspace k′, while Hk′′ is
naturally isomorphic to Hχ′′ defined from k′′. In this way, we obtain the canonical isomorphism
between Hχ′ and Hχ′′ needed to prove Theorem 1.

The proof of Theorem 27 itself is almost exactly the same as the proof of the second part of
[7, Theorem 4.1]. We just note here that one needs to replace the linear action ρ of C× on g
from [7] with one defined by ρ(t)(x) = td−jx, for t ∈ C× and x ∈ gj . There is a corresponding
Kazhdan filtration on U(g) as in [7, § 4]. We also note the identity

m⊥ = [n, e] ⊕ zg(f),

where m⊥ is the annihilator of m in g with respect to the Killing form and (e, h, f) is an sl2-
triple with f ∈ g−d; this is proved as in [7, (2.2)] using Lemma 17. Combining these things, one
gets the analogue of [7, Lemma 2.1], which is the key lemma needed in the spectral sequence
argument used to prove [7, Theorem 4.1].

6. Good gradings for sln(C)

In this section, we describe explicitly the restricted root systems and the good grading
polytopes arising from g = sln(C). Let V denote the natural n-dimensional g-module of column
vectors, with standard basis v1, . . . , vn. Also let t be the standard Cartan subalgebra consisting
of all diagonal matrices in g. Letting δi be the element of t∗ picking out the ith diagonal entry
of a matrix in t, we find that the elements α1 = δ1 − δ2, . . . , αn−1 = δn−1 − δn give a base Δ
for the root system Φ.

Nilpotent orbits in g are parameterized by partitions λ = (λ1 � λ2 � . . .) of n. Fix such
a partition λ throughout the section having a total of m non-zero parts. In order to write
down an sl2-triple corresponding to the partition λ explicitly, we first recall the definition of
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the Dynkin pyramid of shape λ, following [6]. This is a diagram consisting of n boxes each
of size 2 units by 2 units drawn in the upper half of the xy-plane. By the coordinates of a
box, we mean the coordinates of its midpoint. We will also talk about the row number of a
box, meaning its y-coordinate, and the column number of a box, meaning its x-coordinate.
Letting ri = 2i − 1 for short, we see that the Dynkin pyramid has λi boxes in row ri centered
in columns 1 − λi, 3 − λi, . . . , λi − 1, for each i = 1, . . . , m. For example, here is the Dynkin
pyramid of shape λ = (3, 3, 2):

�
1 2 3

4 5 6

7 8

We fix once and for all a numbering 1, 2, . . . , n of the boxes of the Dynkin pyramid, and
let row(i) and col(i) denote the row and column numbers of the ith box. Writing ei,j for
the ij-matrix unit, let e =

∑
i,j ei,j summing over all 1 � i, j � n such that row(i) = row(j)

and col(i) = col(j) + 2. This is a nilpotent matrix of Jordan type λ. For example, taking λ =
(3, 3, 2) and numbering boxes as above, we have e = e8,7 + e6,5 + e5,4 + e3,2 + e2,1. Also let
h =

∑n
i=1 col(i)ei,i. There is then a unique element f ∈ g such that (e, h, f) is an sl2-triple.

With these choices, it is the case that t is contained in c and te is a Cartan subalgebra of ce,
as was required in Section 3. Explicitly, te consists of all matrices in t such that the ith and
jth diagonal entries are equal whenever row(i) = row(j), and the real vector space Ee consists
of all such matrices with entries in R. Let εi ∈ E∗

e be the function picking out the jth diagonal
entry of a matrix in Ee, where j here is chosen so that the jth box of the Dynkin pyramid is in
row ri. Then, E∗

e is the (m − 1)-dimensional real vector space spanned by ε1, . . . , εm subject
to the relation

∑m
i=1 λiεi = 0. It is natural to identify Ee and E∗

e via the real inner product
arising from the trace form on g, with respect to which (εi, εj) = δi,j/λi. We have

Φe = {εi − εj | 1 � i, j � m, i = j}.
Setting pi = εi(p), we see that any point p ∈ Ee can be represented as a tuple (p1, . . . , pm) ∈ Rm

with
∑m

i=1 λipi = 0. The values of d(α) from Theorem 20 can be determined using an explicit
description of ge as in [6]: we have

d(εi − εj) = 1 + |λi − λj |
for all 1 � i, j � m. Therefore, the good grading polytope Pe is the open subset of Ee consisting
of all points p = (p1, . . . , pm) such that

|pi − pj | < 1 + λi − λj

for all 1 � i < j � m. Also, the restricted Weyl group We is the group Sm1 × Sm2 × . . ., where
mi denotes the number of parts of λ that equal i, acting on Ee by permuting all the εi of equal
length.

As explained in [6], there is a convenient way to visualize the good grading Γ(p) corresponding
to p = (p1, . . . , pm) ∈ Pe. First, associate a pyramid π(p) to p by sliding all numbered boxes in
row ri of the Dynkin pyramid to the right by pi units, for each i = 1, . . . , m; for example, π(0)
is the Dynkin pyramid itself. Then, Γ(p) is the grading induced by declaring that each matrix
unit ei,j is of degree col(i) − col(j), the notation col(i) now denoting the column number of the
ith box in π(p). Rearranging the numbers in the boxes of π(p) so that col(1) � col(2) � . . . �
col(n), we find that the characteristic of Γ(p) is (c1, . . . , cn−1) where ci = col(i) − col(i + 1).
Finally, recall that p ∈ Pe defines an integral good grading if and only if p lies on as many
affine hyperplanes as the origin. For every p ∈ Pe, there is a point p′ ∈ Pe lying in the closure
of the alcove containing p, such that Γ(p′) is an integral good grading. This means that in
type A, one can always restrict attention just to integral good gradings without losing any
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generality. Moreover, every integral good grading is adjacent to an even good grading, as was
noted already in the introduction of [3]. We note that these nice things definitely do not usually
happen in other types, as can be observed for the symplectic and orthogonal groups in the next
two sections.

Example 28. Let λ = (3, 3, 2) as above. The set Pe consists of all p = (p1, p2, p3) with
3p1 + 3p2 + 2p3 = 0, |p1 − p2| < 1, |p2 − p3| < 2 and |p1 − p3| < 2:
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The Weyl group We
∼= S2 is generated by the reflection in the horizontal axis in this picture.

The alcoves in Pe are the interiors of the fourteen triangles. There are just three points that
lie on as many affine hyperplanes as the origin, with associated pyramids (renumbered so that
we can read off their characteristics):

�
7 4 1

8 5 2

6 3

�
7 4 1

8 5 2

6 3

�
7 4 1

8 5 2

6 3

Hence, there are three conjugacy classes of integral good gradings for e, with characteristics
(0, 2, 0, 0, 2, 0, 0), (0, 1, 1, 0, 1, 1, 0) and (0, 0, 2, 0, 0, 2, 0), respectively.

7. Good gradings for sp2n(C)

Next, we discuss g = sp2n(C). Let V denote the natural 2n-dimensional g-module with
standard basis v1, . . . , vn, v−n, . . . , v−1 and g-invariant skew-symmetric bilinear form ( , )
defined by (vi, vj) = (v−i, v−j) = 0 and (vi, v−j) = δi,j for 1 � i, j � n. Let t be the set of all
elements of g which act diagonally on the standard basis of V . For the simple roots Δ ⊂ Φ, we
take α1 = δ1 − δ2, . . . , αn−1 = δn−1 − δn, αn = 2δn, where δi ∈ t∗ is defined from hvi = δi(h)vi

for each h ∈ t and i = 1, . . . , n. Writing ei,j for the ij-matrix unit, we see that the following
matrices give a Chevalley basis for g:

{ei,j − e−j,−i}1�i,j�n ∪ {ei,−j + ej,−i, e−i,j + e−j,i}1�i<j�n ∪ {ek,−k, e−k,k}1�k�n.

Let σi,j ∈ {±1} denote the ei,j-coefficient of the unique element in the above basis that
involves ei,j .

Nilpotent orbits in g are parameterized by partitions λ = (λ1 � λ2 � . . .) of 2n such that
every odd part appears with even multiplicity. Fix such a symplectic partition λ throughout
the section. We begin by introducing the symplectic Dynkin pyramid of shape λ, following the
idea of [6] closely once more. This is a diagram consisting of 2n boxes each of size 2 units by
2 units drawn in the xy-plane. As before, the coordinates of a box are the coordinates of its
midpoint, and the row and column numbers of a box mean its y- and x-coordinate, respectively.
Before we attempt a formal definition, here are some examples of symplectic Dynkin pyramids
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for λ = (2, 2, 1, 1), (4, 3, 3, 2, 2), (4, 2, 1, 1) and (4, 2, 2, 2), respectively:

�

3

−3

−2 −1

1 2
�

−7 −6

−5 −4 −3

6 7

3 4 5

−2 −1 1 2 �

−4

−3

−2 −1 1 2

3
�

�	
	

�
�	
	

4

�

−5

−3

−4

−2 −1 1 2

3

4 5

�
�	
	

�
�	
	

To describe the Dynkin pyramid in the general case, the parts of λ indicate the number of
boxes in each row, and the rows are added to the diagram in order, starting with the row
corresponding to the largest part of λ closest to the x-axis and moving out from there, in a
centrally symmetric way. The only complication is that if some (necessarily even) part λi of λ
has odd multiplicity, then the first time a row of this length is added to the diagram it is split
into two halves, the right half is added to the next free row in the upper half plane in columns
1, 3, . . . , λi − 1 and the left half is added to the lower half plane in a centrally symmetric way.
We refer to the exceptional rows arising in this way as skew rows; in particular, if the largest
part of λ has odd multiplicity, then the zeroth row is a skew row. The missing boxes in skew
rows are drawn as a box with a cross through it. We let r1 < . . . < rm denote the numbers of
the non-empty rows in the upper half plane that are not skew rows, and define λ̄i to be the
number of boxes in row ri for each i = 1, . . . , m.

Fix from now on a numbering of the boxes of the Dynkin pyramid by the numbers
1, . . . , n,−n, . . . ,−1 in such a way that i and −i appear in centrally symmetric boxes, for
each i = 1, . . . , n. As before, we write row(i) and col(i) for the row and column numbers of
the ith box. Now we can fix a choice of an sl2-triple (e, h, f) with e of Jordan type λ. Define
e ∈ g to be the matrix

∑
i,j σi,jei,j , where the sum is over all pairs i, j of boxes in the Dynkin

pyramid such that

either col(i) = col(j) + 2 and row(i) = row(j);
or col(i) = 1, col(j) = −1 and row(i) = − row(j) is a skew

row in the upper half plane.

For example, if λ = (4, 2, 1, 1) and the Dynkin pyramid is labelled as above, then

e = e3,−3 + e2,1 + e1,−1 − e−1,−2.

Also define h ∈ t to be
∑

i col(i)ei,i, again summing over all boxes in the Dynkin pyramid.
There is then a unique f ∈ g such that (e, h, f) is an sl2-triple.

The important thing about these choices is that once again t is contained in c and te is a
Cartan subalgebra of ce. In fact, Ee consists of all matrices in t with entries from R, such
that the ith and jth diagonal entries are equal whenever row(i) = row(j) and the kth diagonal
entry is zero whenever row(k) is a skew row, for 1 � i, j, k � n. For i = 1, . . . , m, let εi be the
function picking out the jth diagonal entry of a matrix in Ee, where 1 � j � n here is chosen
so that the jth box is in row ri in the Dynkin pyramid. Then, ε1, . . . , εm form a basis for E∗

e .
We identify Ee and E∗

e via the trace form (εi, εj) = δi,j/2λ̄i. We have

Φe = {εi ± εj,±2εk | 1 � i, j, k � m, i = j}

if there are no skew rows, that is, all non-zero parts of λ are of even multiplicity, or

Φe = {±εh, εi ± εj ,±2εk | 1 � h, i, j, k � m, i = j}
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if there are skew rows. The values of d(α) from Theorem 20 for all α ∈ Φe are:

d(εi ± εj) = 1 + |λ̄i − λ̄j |,

d(±2εk) =

{
1 if λ̄k is odd,

3 if λ̄k is even,

d(±εh) = 1 + min{|λ̄h − t| | t is a non-zero part of λ of odd multiplicity}.
Hence, representing a point p ∈ Ee as an m-tuple p = (p1, . . . , pm) of real numbers defined from
pi = εi(p), we see that the good grading polytope Pe is the open subset of Ee defined by the
inequalities

|pi ± pj | < 1 + λ̄i − λ̄j ,

|pk| <

⎧⎪⎨⎪⎩
1
2 if λ̄k is odd,
1 if λ̄k is even of multiplicity greater than 2 in λ,
3
2 if λ̄k is even of multiplicity 2 in λ,

for all 1 � i < j � m and 1 � k � m. Also, letting mi denote the multiplicity of i as a part
of the partition (λ̄1, λ̄2, . . . ), we deduce that the restricted Weyl group We is the subgroup
Bm1 × Bm2 × . . . of the Weyl group Bm, acting on {±ε1, . . . ,±εm} by all sign changes and all
permutations of the εi of equal length.

Again, there is a useful combinatorial way to visualize the good grading Γ(p) corresponding
to a point p = (p1, . . . , pm) ∈ Pe involving pyramids. Let π(p) denote the pyramid obtained
from the symplectic Dynkin pyramid by sliding all numbered boxes in rows ±ri to the right
by ±pi units. Then, Γ(p) is the grading induced by declaring that each matrix unit ei,j is of
degree col(i) − col(j), where the notation col(i) now denotes the column number of the ith box
in π(p). The characteristic of the grading Γ(p) can be computed by first rearranging the entries
in the boxes of π(p) using all permutations and sign changes from the Weyl group W = Bn, so
that col(1) � col(2) � . . . � col(n) � 0. Then, the characteristic of Γ(p) is (c1, . . . , cn) where
ci = col(i) − col(i + 1) for i = 1, . . . , n − 1 and cn = 2 col(n).

Example 29. Take λ = (2, 2, 1, 1). Then Pe consists of all p = (p1, p2) with |p1| < 3
2 and

|p2| < 1
2 :
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The Weyl group We
∼= S2 × S2 is generated by reflections in the horizontal and vertical axes.

There are three integral good gradings for e compatible with t, with associated pyramids
(renumbered so that we can read off their characteristics):

�

3

−3

−2

1

−1

2
�

3

−3

−2 1

−1 2
�

3

−3

−2 1

−1 2

These have characteristics (2, 0, 0), (0, 1, 0) and (2, 0, 0), respectively. The right and left good
gradings are conjugate by the element of We corresponding to the reflection in the vertical axes
of the good grading polytope.
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8. Good gradings for soN (C)

Finally, let g = soN (C) and set n = � 1
2N�, assuming N � 3. Let V be the natural

N -dimensional g-module with standard basis v1, . . . , vn, v0, v−n, . . . , v−1 and g-invariant
symmetric bilinear form ( , ) defined by

(v0, vi) = (v0, v−i) = 0, (v0, v0) = 2, (vi, vj) = (v−i, v−j) = 0 and (vi, v−j) = δi,j

for 1 � i, j � n (omitting v0 everywhere if N is even). Let t be the set of all elements of g which
act diagonally on the standard basis of V . Defining δi ∈ t∗ as in Section 7, we find that a choice
of simple roots Δ ⊂ Φ is given by α1 = δ1 − δ2, . . ., αn−1 = δn−1 − δn, and αn = δn−1 + δn if
N is even or αn = δn if N is odd. The following matrices give a Chevalley basis for g (again
omitting the last family if N is even):

{ei,j − e−j,−i}1�i,j�n ∪ {ei,−j − ej,−i, e−j,i − e−i,j}1�i<j�n

∪ {2ek,0 − e0,−k, e0,k − 2e−k,0}1�k�n.

As before, define σi,j to be the coefficient of ei,j in this basis if it appears, or zero if no basis
element involves ei,j .

Nilpotent orbits in g are parameterized by partitions λ = (λ1 � λ2 � . . .) of N such that
every even part appears with even multiplicity; in case N is even, we mean nilpotent orbits
under the group ON not SON here. Fix such an orthogonal partition λ throughout the section.
We need the orthogonal Dynkin pyramid of type λ, which again consists of N boxes of size
2 units by 2 units arranged in the xy-plane in a centrally symmetric way. Assume to start with
that N is even. Then the Dynkin pyramid is constructed as in the symplectic case, adding
rows of lengths determined by the parts of λ working outwards from the x-axis starting with
the largest part, in a centrally symmetric way. The only difficulty is if some (necessarily odd)
part of λ appears with odd multiplicity. As N is even, the number of distinct parts having odd
multiplicity is even. Choose i1 < j1 < . . . < ir < jr such that λi1 > λj1 > . . . > λir > λjr are
representatives for all the distinct odd parts of λ having odd multiplicity. Then the first time
the part λis needs to be added to the diagram, the part λjs is also added at the same time, so
that the parts λis and λjs of λ contribute two centrally symmetric rows to the diagram, one
row in the upper half plane with boxes in columns 1 − λjs , 3 − λjs , . . . , λis − 1 and the other
row in the lower half plane with boxes in columns 1 − λis , 3 − λis , . . . , λjs − 1. We will refer
to the exceptional rows arising in this way as skew rows. To demonstrate this construction we
give examples, for λ = (3, 3, 2, 2), (3, 1, 1, 1), (3, 2, 2, 1) and (7, 7, 7, 3), respectively:
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2

−7
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−8 −6

If N is odd, there is one additional consideration. There must be some odd part appearing
with odd multiplicity. Let λi be the largest such part, and put λi boxes into the zeroth row in
columns 1 − λi, 3 − λi, . . . , λi − 1; we also treat this zeroth row as a skew row. Now remove the
part λi from λ, to obtain a partition of an even number. The remaining parts are then added
to the diagram exactly as in the case N even. Below we give two more examples of orthogonal
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pyramids, for λ = (6, 6, 5) and (5, 3, 1), respectively:

0

−8 −7 −6 −5 −4 −3

−2 −1

3

1 2

4 5 6 7 8 	
		

�
��	
		

�
��

0

−4 −3

−1

3 4

2−2 1

Let r1 < . . . < rm denote the numbers of the non-empty rows in the upper half plane of the
Dynkin pyramid that are not skew rows, and define λ̄i to be the number of boxes in row ri for
each i = 1, . . . , m.

Note that in the case N is odd, there is always a box at (0, 0); we always number it by 0. The
remaining boxes, for N even or odd, are numbered ±1, . . . ,±n exactly as in the symplectic
case, and we use the notation row(i) and col(i) just as before. Define e ∈ g to be the matrix∑

i,j σi,jei,j , where the sum is over all pairs i, j of boxes in the Dynkin pyramid such that

either col(i) = col(j) + 2 and row(i) = row(j);
or col(i) = 2, col(j) = 0 and row(i) = − row(j) is a skew

row in the upper half plane;
or col(i) = 0, col(j) = −2 and row(i) = − row(j) is a skew

row in the upper half plane.

This is an element of g having Jordan type λ. (If all parts of λ are even then there is another
conjugacy class of elements of g of Jordan type λ, a representative for which can be obtained
using the above formula by swapping the entries i and −i in the Dynkin pyramid for some
1 � i � n.) For example, for λ = (5, 3, 1) labelled as above,

e = e4,3 − e4,−3 + e3,−4 − e−3,−4 + e2,1 + e1,0 − e0,−1 − e−1,−2.

Let h =
∑

i col(i)ei,i. Then there is a unique element f ∈ g such that (e, h, f) is an sl2-triple.
Again, these choices ensure that t is contained in c and te is a Cartan subalgebra of ce. In

the same way as for sp2n(C), Ee consists of all matrices in t with entries from R, such that the
ith and jth diagonal entries are equal whenever row(i) = row(j) and the kth diagonal entry is
zero whenever row(k) is a skew row, for 1 � i, j, k � n. Define the basis ε1, . . . , εm for E∗

e just
as in the symplectic case, and work with the inner product defined by (εi, εj) = δi,j/2λ̄i. This
time, we have

Φe = {εi ± εj ,±2εk | 1 � i, j, k � m, i = j, λ̄k = 1}
if there are no skew rows, that is, all non-zero parts of λ are of even multiplicity, or

Φe = {±εh, εi ± εj,±2εk | 1 � h, i, j, k � m, i = j, λ̄k = 1}
if there are skew rows. The values of d(α) from Theorem 20 for all α ∈ Φe are:

d(εi ± εj) = 1 + |λ̄i − λ̄j |,

d(±2εk) =

{
1 if λ̄k is even,

3 if λ̄k is odd,

d(±εh) = 1 + min{|λ̄h − t| | t is a non-zero part of λ of odd multiplicity}.
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Hence, representing points p ∈ Ee as m-tuples p = (p1, . . . , pm) of real numbers so that pi =
εi(p), the good grading polytope Pe is the open subset of Ee defined by the inequalities

|pi ± pj | < 1 + λ̄i − λ̄j ,

|pk| <

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2 if λ̄k is even,

1 if λ̄k is odd of multiplicity greater than 2 in λ,
3
2 if λ̄k = 1 is odd of multiplicity 2 in λ,

s if λ̄k = 1 is of multiplicity 2 in λ,

for all 1 � i < j � m and 1 � k � m. Here, in the case that the part 1 is of multiplicity 2 in λ,
s denotes the smallest part of λ that is greater than 1. Let mi denote the multiplicity of i as a
part of the partition (λ̄1, λ̄2, . . . ). If there are skew rows, then the restricted Weyl group We is
Bm1 × Bm2 × . . . , acting on {±ε1, . . . ,±εm} by all sign changes and all permutations of the εi

of equal length. If there are no skew rows, then We is instead the subgroup of Bm1 × Bm2 × . . .
consisting of all the elements in this group that act on {±ε1, . . . ,±εm} with only an even
number of sign changes of the εi for which λ̄i is odd.

For p = (p1, . . . , pm) ∈ Pe, we define the pyramid π(p) by sliding all numbered boxes in
rows ±ri of the orthogonal Dynkin pyramid to the right by ±pi units. Then, the grading Γ(p)
associated to the point p ∈ Pe is the grading induced by declaring that each matrix unit ei,j

is of degree col(i) − col(j), where the notation col(i) here denotes the column number of the
ith box in π(p). To compute the characteristic of the grading Γ(p), suppose first that N is odd.
Rearrange the entries in the boxes of π(p) using all permutations and sign changes from the
Weyl group W = Bn so that col(1) � col(2) � . . . � col(n) � 0. Then, the characteristic of Γ(p)
is (c1, . . . , cn) where ci = col(i) − col(i + 1) for i = 1, . . . , n − 1 and cn = col(n). Instead, if N is
even, rearrange the entries in the boxes of π(p) using all permutations and sign changes from the
Weyl group W = Dn (that is, so that there are only an even number of sign changes in total) so
that col(1) � . . . � col(n − 1) � | col(n)|. Then, the characteristic of Γ(p) is (c1, . . . , cn) where
ci = col(i) − col(i + 1) for i = 1, . . . , n − 1 and cn = col(n − 1) + col(n).

Acknowledgements. We thank Ross Lawther, Gerhard Röhrle, Gary Seitz, Eric Sommers
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