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Abstract

This paper is concerned with the modular representation theory of the affine Hecke–Clifford superalge-
bra, the cyclotomic Hecke–Clifford superalgebras, and projective representations of the symmetric group.
Our approach exploits crystal graphs of affine Kac–Moody algebras.
© 2006 Published by Elsevier Inc.

1. Introduction

In [Ja1], Gordon James described leading terms in decomposition matrices and branching
rules for representations of symmetric groups. To be more precise, let F be a field of character-
istic p and Sn be the symmetric group. As in [Ja2], � denotes the dominance order on partitions,
Sλ is the Specht module corresponding to a partition λ � n, and Dμ is the irreducible FSn-
module corresponding to a p-regular partition μ � n. For every partition λ � n, James defines
its regularization λR , which is a p-regular partition of n. Also, the shadow sh(μ) � (n − 1) of a
p-regular partition μ � n is the p-regular partition obtained by removing the shadow node from
the Young diagram of μ, that is, the leftmost node of the outer ladder of μ. The main result of
[Ja1] is now as follows.

✩ Both authors partially supported by the NSF (Grant Nos. DMS-9801442 and DMS-9900134).
* Corresponding author.

E-mail addresses: brundan@uoregon.edu (J. Brundan), klesh@math.uoregon.edu (A. Kleshchev).
 45

46

47
0021-8693/$ – see front matter © 2006 Published by Elsevier Inc.
doi:10.1016/j.jalgebra.2006.01.055



ARTICLE IN PRESS
JID:YJABR AID:11099 /FLA [m1+; v 1.59; Prn:18/05/2006; 12:32] P.2 (1-10)

2 J. Brundan, A. Kleshchev / Journal of Algebra ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

Theorem 1.1 (James).

(i) For λ � n, DλR
appears as a composition factor of Sλ with multiplicity 1, and for any other

composition factor Dμ of Sλ we have that μ > λR .
(ii) For a p-regular μ � n, let the outer ladder of μ be of size m. Then Dsh(μ) appears as a com-

position factor of the restriction Dμ↓Sn−1
with multiplicity m, and for any other composition

factor Dν of Dμ↓Sn−1
we have that ν > sh(μ).

The goal of this paper is to obtain a similar result for projective or spin representations of
symmetric groups. Let Tn be the (non-trivially) twisted group algebra of Sn. Then spin represen-
tations of Sn are the same as representations of Tn. In fact it is more convenient to work with
Tn as a superalgebra and consider its supermodules instead of modules. For this reason in the
remainder of the article all modules will in fact be supermodules without further comment. We
refer the reader to [BK2], [K, Part II] for explanation of these basic ideas.

A partition λ � n is called p-strict if all its repeated parts are divisible by p. For each p-
strict partition λ � n, we introduce in Section 5 a notion of Specht ‘module’ S(λ) for Tn; it is
actually a virtual module. On the other hand, the irreducible modules D(μ) for Tn are labeled by
restricted p-strict partitions μ � n, see [BK2]. In Section 2 we define analogues of the ladders,
regularization λR , shadow sh(μ), and shadow node. Our main result is then as follows.

Theorem 1.2.

(i) For any p-strict λ � n, D(λR) appears as a composition factor of S(λ) with multiplicity 1,
and for any other composition factor D(μ) of S(λ) we have that μ < λR .

(ii) For a restricted p-strict μ � n, let the outer ladder of μ be of size m and residue i. Then
D(sh(μ)) appears as a composition factor of the restriction D(μ)↓Tn−1

with multiplicity 2m

if i �= 0 and (n − hp′(λ)) is odd, and with multiplicity m otherwise. Moreover, for any other
composition factor D(ν) of D(μ)↓Tn−1

we have that ν < sh(μ).

Note that all >’s and <’s are interchanged in the two theorem above. This has to do with
the labeling we are using for irreducible Tn-modules; the analogously labeled irreducible Sn-
modules would be Dλ := Dλt ⊗ sgn.

Finally, we note that the identification of the two labellings of the irreducible Tn-modules by
the set RPp(n) from [BK2,BK1] is still lacking. Here we work with the labeling of [BK2].
Theorem 1.2 is a step towards the desired identification.

2. Ladders, shadows and regularization

We will use the same notation as in [BK1,BK2,K]. In particular we have:

• p = 2� + 1;
• Pp(n) is the set of p-strict partitions of n;
• RPp(n) is the set of restricted p-strict partitions of n;
• h(λ) is the number of non-zero parts of a partition λ;
• hp′(λ) is the number of parts of a partition λ which are not divisible by p.
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As usual, the Young diagram of a partition λ (identified with λ itself) can be considered as a
subset of the set Q := Z>0 × Z>0 of nodes. If A = (i, j) is a node, we say that A is in the row
i and column j . If B = (i′, j ′) is another node, we say that A is to the left of B (or B is to the
right of A) if j < j ′.

We denote the n-tuple (0, . . . ,0,1,0, . . . ,0) ∈ Z
n, with 1 in the ith position, by εi . We write

αi for εi − εi+1, 1 � i < n. For λ,μ � n, we have that λ � μ in the dominance ordering if and
only if λ − μ = ∑n−1

i=1 miαi for some non-negative integers m1, . . . ,mn−1.
Let j ∈ Z>0 be a column number. It can be written uniquely in the form

j = mp + � + 1 ± k, m, k ∈ Z, 0 � k � �.

The residue of j is then defined to be � − k, written res j = � − k. The residue of A = (i, j),
written resA, is defined to be res j . So resA ∈ {0,1, . . . , �} for any A, and the residue of a node
depends only on its column. The residue content cont(λ) of a p-strict partition λ means the tuple
(c0, c1, . . . , c�) where ci is the number of nodes of residue i in λ.

Following [Ja1,LT], we define certain sets of nodes called ladders. Fix any j � 1. The j th
ladder Lj is defined as follows. If res j �= 0 then

Lj = {(
i, j − (i − 1)p

) ∣∣ 1 � i � 	j/p
}.
If res j = 0 then j = mp or mp + 1 for some m ∈ Z, and in this case we set

Lj = {(
i,mp − (i − 1)p

) ∣∣ 1 � i � m
} ∪ {(

i,mp + 1 − (i − 1)p
) ∣∣ 1 � i � m + 1

}
.

If L = Lj , we write simply resL for res j . Note that all nodes of L are of residue resL, and
that ladders of residue 0 are twice as wide as the others. A k-element subset of a ladder is called
complete if it consists of the k leftmost nodes of the ladder. We say that the ladder L = Lj is the
outer ladder for λ if λ ∩ L �= ∅ but λ ∩ Lj+1 = ∅. In this case, the rightmost node on λ ∩ L will
be called the shadow node of λ. If λ is restricted (i.e. λ ∈ RPp(n)) and A is the shadow node
of λ then λ − A is also restricted. We will sometimes write sh(λ) for λ − A.

Lemma 2.1. Let λ ∈ Pp(n). Then λ is restricted if and only if for every ladder L, the intersection
L ∩ λ is a complete subset of L.

Proof. If L ∩ λ is not complete, then there are nodes A = (i, j), and B = (i − 1, j + x) on
the ladder L such that A /∈ λ and B ∈ λ. If x � p this implies that λi−1 − λi > p, i.e. λ is
not restricted. Otherwise resL = 0, A = (i,mp + 1), and B = (i − 1, (m + 1)p). In this case
λi−1 − λi � p, and the equality holds only if p divides λi−1. So again λ is not restricted. The
argument can be easily reversed. �

For every p-strict partition λ we define its regularization λR to be the set of nodes such that
for every ladder L, λR ∩ L consists of the leftmost |λ ∩ L| nodes on L. In other words, λR is
obtained by shifting the nodes of λ along the ladders to the left as far as they can go.
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Example 2.2. If p = 5 and λ = (12,5) then λR = (9,6,2):

λ = 0 1 2 1 0 0 1 2 1 0 0 1
0 1 2 1 0 , λR =

0 1 2 1 0 0 1 2 1
0 1 2 1 0 0
0 1

.

Proposition 2.3. Let λ ∈ Pp(n). Then λR ∈ RPp(n). Moreover, λ = λR if and only if λ is
restricted.

Proof. In view of Lemma 2.1, all we need to check is that λR ∈ Pp(n), which is left as an
exercise. �
3. P -Functions

Let G be the algebraic supergroup Q(n), see [BK3]. If M is a (finite-dimensional) G-module,
there is a notion of its formal character, see [B, §3]:

chM =
∑

λ∈X(T )

(dimMλ)x
λ ∈ Z

[
x±1

1 , . . . , x±1
n

]
.

We are only going to consider polynomial representations of G of degree n in the sense of
[BK3, §10]. For such modules, the formal character chM is a homogeneous symmetric polyno-
mial of degree n in x1, . . . , xn.

Let Ch(n) ⊂ Z[x1, . . . , xn] be the Z-submodule spanned by all formal characters chM , where
M is an arbitrary polynomial representation of G of degree n. Then Ch(n) has a Z-basis given
by the characters

Lλ := chL(λ) (3.1)

of irreducible modules as λ runs through Pp(n), see [BK3, 10.4].
As in [B, §4], for any λ ∈ Pp(n) define a virtual module

E(λ) =
∑
i�0

(−1)iH i(λ), (3.2)

and its formal character

Eλ =
∑
i�0

(−1)i chHi(λ). (3.3)

Let λ ∈ Pp(n) and Pλ = Pλ(x1, . . . , xn) be the Schur’s P -function, obtained by taking
t = −1 in [M, III(2.2)]. Set

e(λ) :=
⌊

hp′(λ) + 1

2

⌋
, (3.4)

cf. [BK3, 6.4]. We use the following result proved in [B, 4.3, 6.3].
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Theorem 3.1. Let λ ∈ Pp(n). Then Eλ = 2e(λ)Pλ. Moreover,

Eλ = Lλ +
∑

μ∈Pp(n)

cλμLμ,

with cλμ ∈ Z such that cλμ = 0 unless μ < λ and cont(λ) = cont(μ).

Corollary 3.2. {Eλ | λ ∈ Pp(n)} is a Z-basis of Ch(n).

Let f = f (x1, . . . , xn) ∈ Z[x±1
1 , . . . , x±1

n ]. Define

f ↓ = (f ↓)(x1, . . . , xn−1)

to be the xn-coefficient of f . It follows from (3.6) below that the restriction of ↓ defines a map
from Ch(n) to Ch(n − 1).

Definition 3.3. Let λ ∈ Pp(n). A node B = (i, j) ∈ λ is called branching if λ − B is a partition
(of n − 1), and either j = 1 or the part j − 1 appears even number of times in λ.

It is easy to see that if λ ∈ Pp(n) and B ∈ λ is branching then λ − B ∈ Pp(n − 1). The
following result is a special case of [M, III(5.5′), (5.14′)].

Proposition 3.4. Let λ ∈ Pp(n), and let B1,B2, . . . ,Bk be the branching nodes of λ. Then

Pλ↓ =
k∑

i=1

aiPλ−Bi
,

where ai = 1 if h(λ − Bi) < h(λ), and ai = 2 otherwise.

Corollary 3.5. Let λ ∈ Pp(n), and let B1,B2, . . . ,Bk be the branching nodes of λ. Then

Eλ↓ =
k∑

i=1

ai2
e(λ)−e(λ−Bi)Eλ−Bi

,

where ai = 1 if h(λ − Bi) < h(λ), and ai = 2 otherwise.

We now explain what the operation ↓ corresponds to at the level of irreducible modules. Set

L(λ)j :=
⊕{

L(λ)μ
∣∣ μ is a weight with μn = j

}
.

Then we have a decomposition

resQ(n)
Q(n−1) L(λ) =

⊕
L(λ)j . (3.5)
j�0
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Now,

Lλ↓ = chL(λ)1. (3.6)

Let Ch(n)′ be the Z-submodule of Ch(n) spanned by {Lλ | λ ∈ RPp(n)}, and let

Ch(n) → Ch(n)′, f �→ f ′

be the natural projection, i.e. the linear map such that for λ ∈ Pp(n) we have L′
λ = Lλ if λ is

restricted, L′
λ = 0 otherwise.

Lemma 3.6. Let f ∈ Ch(n). Then (f ′↓)′ = (f ↓)′.

Proof. As all the maps are linear, it suffices to check the lemma for f = Lλ, λ ∈ Pp(n). If λ

is restricted, then Lλ = L′
λ, and the result is clear. Assume then that λ is not restricted. In this

case L′
λ = 0, so we have to check that (Lλ↓)′ = 0 or that (chL(λ)1)

′ = 0, see (3.6). As λ is not
restricted, Steinberg’s tensor product theorem [BK3, 9.9] implies that

L(λ) = L
(
λ(0)

) ⊗ L
(
λ(1)

)[1]
,

where λ = λ(0)+pλ(1), λ(0) is restricted, and μ = (μ1 � · · · � μn � 0) is a non-zero dominant
weight for GL(n). As L(λ(1))

[1]
μ = 0 for any μ with μn = 1, we have

L(λ)1 = L
(
λ(0)

)
1 ⊗ L

(
λ(1)

)[1]
0 .

Therefore, no composition factor of the Q(n − 1)-module L(λ)1 is restricted, which proves that
(chL(λ)1)

′ = 0. �
4. Leading terms

We need three technical combinatorial lemmas to prove our main result.

Lemma 4.1. Let λ ∈ Pp(n) and A,B be nodes of λ such that λ − A,λ − B ∈ Pp(n − 1).
Assume that A ∈ Li , B ∈ Lj , and the ladder Li is strictly to the right of the ladder Lj . Then
(λ − A)R > (λ − B)R .

Proof. We have (λ−A)R = λR −A′ and (λ−B)R = λR −B ′, where A′ and B ′ are the rightmost
nodes of λR ∩ Li and λR ∩ Lj , respectively. Let A′ be in the row k and B ′ be in the row l. We
need to prove that k > l. Assume this is not the case. Then, by Lemma 2.1, the lth row of λR

contains a node from the ladder Li . This node lies to the right of B ′, which contradicts the fact
that λR − B ′ is a partition. �
Lemma 4.2. Let λ,μ ∈ RPp(n). If μ � λ then sh(μ) � sh(λ). Moreover, if cont(λ) = cont(μ)

then μ �= λ implies sh(μ) �= sh(λ).
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Proof. Let the shadow node A of λ be in row i and the shadow node B of μ be in row j . We
have to prove that μ − εj � λ − εi . If i � j , then μ � λ � λ + εj − εi , whence μ − εj � λ − εi ,
as required. Now let i < j . Write μ = λ − ∑n−1

k=1 mkαk . Then μ − εj = λ − εi + (εi − εj ) −∑n−1
k=1 mkαk . So, we see that μ − εj � λ − εi , unless mr = 0 for some i � r < j . It follows

that μr − μr+1 � λr − λr+1 = p. As μ is restricted, we now deduce that mk = 0 for all k > r .
Similarly, mk = 0 for all i � k < r . This shows that μk = λk for all k > i, which contradicts the
assumption that j > i.

Finally, if cont(λ) = cont(μ), suppose that λ �= μ. We may assume without loss of generality
that i < j . Then, because λ is restricted and A is its shadow node, λj + 1 = μj implies that
resB �= resA. So cont(λ − A) �= cont(μ − B), hence λ − A �= μ − B . �
Lemma 4.3. Let λ,μ ∈ RPp(n), cont(λ) = cont(μ), and B be the shadow node of μ.

(i) If A is the shadow node of λ and resA = resB , then sh(μ) < sh(λ) implies μ < λ.
(ii) Let L be the outer ladder for λ, L′ be a ladder strictly to the left of L, and A be the rightmost

node in λ ∩ L′. Assume that λ − A ∈ RPp(n − 1). Then sh(μ) � λ − A implies μ < λ.

Proof. First of all note that λ �= μ. Indeed, in (i), λ = μ would imply λ − A = μ − B , giving
a contradiction. In (ii), in view of Lemma 4.1, λ = μ implies μ−B > λ−A, giving a contradic-
tion again.

Let A be in row i and B be in row j . We can write μ − εj = λ − εi − ∑n−1
k=1 mkαk for non-

negative coefficients mk ∈ Z. If j � i, this implies that μ � λ, whence μ < λ as we have already
noticed that λ �= μ. So suppose that i > j . Again, it suffices to show that μ � λ. This is certainly
the case unless mr = 0 for some j � r < i. As B is the shadow node of μ and λ− εi is restricted,
it now follows that mk = 0 for all k � r . In particular, λi = μi + 1 and λk = μk for k > i. To
complete the proof of (i), we now get that resA �= resB , a contradiction. To complete the proof
of (ii), the fact that λ is restricted implies that λi+1 = 0. So A must be on the outer ladder of λ

(using restrictedness of λ again), which is a contradiction. �
Theorem 4.4. Let λ ∈ Pp(n), L be the outer ladder of λ, and m = |λ ∩ L|.

(i) If λ is restricted and A is the shadow node of λ, then

(Lλ↓)′ = d(λ)Lλ−A +
∑

μ∈RPp(n−1)

μ<λ−A

bλ,μLμ,

where d(λ) = m if resL = 0 and hp′(λ) is even, and d(λ) = 2m otherwise.
(ii) We have

E′
λ = LλR +

∑
μ∈RPp(n)

μ<λR

cλμLμ.

Proof. Let B1, . . . ,Bk be the branching nodes of λ, and assume that Bi ∈ L if and only if 1 �
i � t (note t does not have to equal m if resL = 0). We prove the theorem by induction on n, the
induction base being clear. Assume the theorem is correct for n − 1.
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We prove (i) for n. Note that (λ − Bi)
R = λ − A for 1 � i � t , and (λ − Bi)

R < (λ − A) for
i > t , in view of Lemma 4.1. Now, using Corollary 3.5 and inductive hypothesis (part (ii)), one
can deduce that Lλ−A appears in (Eλ↓)′ exactly d(λ) times, and we have ν < λ − A for every
other Lν appearing in (Eλ↓)′.

On the other hand, by Theorem 3.1, we have that

Eλ = Lλ +
∑
μ<λ

cλμLμ,

where cλμ = 0, unless cont(μ) = cont(λ). So, by Lemma 3.6,

(Eλ↓)′ = (
E′

λ↓
)′ = (Lλ↓)′ +

∑
μ∈RPp(n)

μ<λ

cλμ(Lμ↓)′. (4.1)

Now, we apply induction on the dominance order on RPp(n). By inductive hypothesis, we
may assume that for any μ ∈ RPp(n) with μ < λ, one has (Lμ↓)′ = d(μ)Lsh(μ) + (∗), where
(∗) stands for a linear combination of Lν with ν < sh(μ). Now it suffices to apply Lemma 4.2.

We prove (ii) for n. Let A be the shadow node for λR . Note that (λ − Bi)
R = λR − A for

1 � i � t , and (λ − Bi)
R < λR − A in view of Lemma 4.1. So, by Lemma 3.6, Corollary 3.5 and

inductive hypothesis, we have

(
E′

λ↓
)′ = (Eλ↓)′ =

k∑
i=1

ai2
e(λ)−e(λ−Bi)E′

λ−Bi

=
t∑

i=1

ai2
e(λ)−e(λ−Bi)LλR−A + (∗), (4.2)

where (∗) stands for the terms Lν with ν < λ − A.
We now prove that

t∑
i=1

ai2
e(λ)−e(λ−Bi) = d

(
λR

)
. (4.3)

If resL �= 0, then (4.3) is clear. Now let resL = 0. In this case the row containing Bi (1 � i � t)

might have one or two nodes from λ ∩ L. If it has one, we say that Bi is of the first type, and if
it has two, we say that Bi is of the second type. Let C1, . . . ,Cx and D1, . . . ,Dy be the type one
and type two nodes among B1, . . . ,Bt , respectively. We have x + y = t and x + 2y = m. Note
that hp′(λ − Dj) = hp′(λ) − 1, and

hp′(λ − Ci) =
{

hp′(λ) + 1 if Ci is not in the first column,

hp′(λ) − 1 otherwise.

This implies (4.3) if we use hp′(λ) ≡ hp′(λR) (mod 2) [K, (22.9), (22.10)].
Now, (4.2), (4.3), part (i) (already proved for n), and Lemma 4.2 imply that LλR appears

in E′ exactly once. It remains to prove that μ < λR for any other Lμ appearing in E′ . Take
λ λ
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any such Lμ. Applying (4.2), part (i) and Lemma 4.2 again, we deduce that sh(μ) < λR − A.
If cont(sh(μ)) = cont(λR − A) then μ < λR by Lemma 4.3(i). Otherwise, note by (4.2), that
Lsh(μ) must appear in some Eλ−Bi

for resBi �= resA. By inductive hypothesis, sh(μ) � λR − C,
where C is the rightmost node of λR on the ladder containing Bi , i.e. (λ − Bi)

R = λR − C. As
resBi �= resA, this ladder is to the left of the outer ladder L. So μ < λR by Lemma 4.3(ii). �
5. Translation to Tn-modules

Recall from [BK2, §10] (cf. also [BK3, §10]) the Schur functor M �→ ξωM going from poly-
nomial Q(n)-modules of degree n to modules over the Sergeev algebra Yn. By [BK3, 10.2], we
have ξωL(λ) = 0 if λ is not restricted, and if λ is restricted then ξωL(λ) = M(λ), an irreducible
Yn-module of the same type as L(λ). Moreover,{

M(λ)
∣∣ λ ∈ RPp(n)

}
is a complete set of irreducible Yn-modules up to isomorphism.

Finally, there is an exact functor Gn from Yn-modules to Tn-modules, see [K, 13.2] or
[BK2, §3]. If n is even then Gn is an equivalence categories, in particular GnM(λ) = D(λ),
an irreducible Tn-module of the same type as M(λ). If n is odd and hp′(λ) is even, then
GnM(λ) = D(λ), an irreducible Tn-module of type Q. If n is odd and hp′(λ) is odd, then
GnM(λ) = D(λ) ⊕ D(λ), where D(λ) is an irreducible Tn-module of type M. Moreover,{

D(λ)
∣∣ λ ∈ RPp(n)

}
is a complete set of irreducible Tn-modules up to isomorphism.

For any λ ∈ Pp(n), we define the Specht ‘module’ to be the virtual module

S(λ) := Gn

(
ξωE(λ)

)
,

obtained by the application of the Schur functor M �→ ξωM followed by the functor Gn to the
virtual module E(λ) defined in (3.2). (One can also interpret the Specht ‘module’ as a complex
whose Euler characteristic is S(λ) but we will not pursue this here.)

The discussion above, [K, (13.11), (13.15)] and Theorem 4.4 imply Theorem 1.2.
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