
ELEMENTARY INVARIANTS FOR CENTRALIZERS OF
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JONATHAN BROWN AND JONATHAN BRUNDAN

Abstract. We construct an explicit set of algebraically independent genera-
tors for the center of the universal enveloping algebra of the centralizer of a
nilpotent matrix in the general linear Lie algebra over a field of characteristic
zero. In particular, this gives a new proof of the freeness of the center, a result
first proved by Panyushev, Premet and Yakimova.

1. Introduction

Let λ = (λ1, . . . , λn) be a composition of N such that either λ1 ≥ · · · ≥ λn

or λ1 ≤ · · · ≤ λn. Let g be the Lie algebra glN (F ), where F is an algebraically
closed field of characteristic zero. Let e ∈ g be the nilpotent matrix consisting
of Jordan blocks of sizes λ1, . . . , λn in order down the diagonal, and write ge for
the centralizer of e in g. Panyushev, Premet and Yakimova [PPY] have recently
proved that S(ge)ge , the algebra of invariants for the adjoint action of ge on the
symmetric algebra S(ge), is a free polynomial algebra on N generators. Moreover,
viewing S(ge) as a graded algebra as usual so ge is concentrated in degree one,
they show that if x1, . . . , xN are homogeneous generators for S(ge)ge of degrees
d1 ≤ · · · ≤ dN , then the sequence (d1, . . . , dN ) of invariant degrees is equal to

(

λ1 1’s︷ ︸︸ ︷
1, . . . , 1,

λ2 2’s︷ ︸︸ ︷
2, . . . , 2, . . . ,

λn n’s︷ ︸︸ ︷
n, . . . , n) if λ1 ≥ · · · ≥ λn,

(1, . . . , 1︸ ︷︷ ︸
λn 1’s

, 2, . . . , 2︸ ︷︷ ︸
λn−1 2’s

, . . . , n, . . . , n︸ ︷︷ ︸
λ1 n’s

) if λ1 ≤ · · · ≤ λn.

This is just one instance of the following conjecture formulated in this generality
by Premet: For any semisimple Lie algebra g and any element e ∈ g the invariant
algebra S(ge)ge is free. In [PPY] this conjecture has already been verified in many
other situations besides the type A case discussed here.

Returning to our special situation, let Z(ge) denote the center of the univer-
sal enveloping algebra U(ge). The standard filtration on U(ge) induces a filtra-
tion on the subalgebra Z(ge) such that the associated graded algebra grZ(ge) is
canonically identified with S(ge)ge ; see [D, 2.4.11]. We can lift the algebraically
independent generators x1, . . . , xN from gr Z(ge) to Z(ge) to deduce (without re-
sorting to Duflo’s theorem [D, 10.4.5]) that Z(ge) is also a free polynomial algebra.
The purpose of this note is to derive an explicit formula for a set z1, . . . , zN of
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algebraically independent generators for Z(ge), generalizing the well known set
of generators of Z(g) itself (the special case e = 0) that arise from the Capelli
identity. We call these the elementary generators for Z(ge). Passing back down
to the associated graded algebra, one can easily obtain from them an explicit set
of elementary invariants that generate S(ge)ge .

To formulate the main result precisely, we must first introduce some notation
for elements of ge. Let ei,j denote the ij-matrix unit in g. Draw a diagram with
rows numbered 1, . . . , n from top to bottom and columns numbered 1, 2, . . . from
left to right, consisting of λi boxes on the ith row in columns 1, . . . , λi, for each
i = 1, . . . , n. Write the numbers 1, . . . , N into the boxes along rows, and use the
notation row(i) and col(i) for the row and column number of the box containing
the entry i. For instance, if λ = (4, 3, 2) then the diagram is

1 2 3 4
5 6 7
8 9

and the nilpotent matrix e of Jordan type λ is equal to e1,2 + e2,3 + e3,4 + e5,6 +
e6,7 + e8,9. For 1 ≤ i, j ≤ n and λj −min(λi, λj) ≤ r < λj , define

ei,j;r :=
∑

1≤h,k≤N
row(h)=i,row(k)=j

col(k)−col(h)=r

eh,k. (1.1)

The vectors {ei,j;r | 1 ≤ i, j ≤ n, λj −min(λi, λj) ≤ r < λj} form a basis for ge;
see [BK2, Lemma 7.3]. Write µ ⊆ λ if µ = (µ1, . . . , µn) is a composition with
0 ≤ µi ≤ λi for each i = 1, . . . , n. Also let |µ| := µ1 + · · ·+µn and `(µ) denote the
number of non-zero parts of µ. Recall that (d1, . . . , dN ) are the invariant degrees
as defined above. Given 0 6= µ ⊆ λ such that `(µ) = d|µ|, suppose that the non-
zero parts of µ are in the entries indexed by 1 ≤ i1 < · · · < id ≤ n. Define the
µth column determinant

cdet(µ) :=
∑

w∈Sd

sgn(w)ẽiw1,i1;µi1
−1ẽiw2,i2;µi2

−1 · · · ẽiwd,id;µid
−1, (1.2)

where ẽi,j;r := ei,j;r − δr,0δi,j(i− 1)λi. We note by Lemma 3.8 below that all the
ei,j;r’s appearing on the right hand side of (1.2) necessarily satisfy the inequality
λj −min(λi, λj) ≤ r < λj , so cdet(µ) is well-defined. For r = 1, . . . , N , define

zr :=
∑
µ⊆λ

|µ|=r,`(µ)=dr

cdet(µ). (1.3)

Main Theorem. The elements z1, . . . , zN are algebraically independent genera-
tors for Z(ge).

In the situation that λ1 = · · · = λn, our Main Theorem was proved already by
Molev [M], following Rais and Tauvel [RT] who established the freeness of S(ge)ge

in that case. Our proof for general λ follows the same strategy as Molev’s proof,
but we need to replace the truncated Yangians with their shifted analogs from



CENTRALIZERS OF NILPOTENT MATRICES 3

[BK2]. We have also included a self-contained proof of the freeness of S(ge)ge ,
although as we have said this was already established in [PPY]. Our approach to
that is similar to the argument in [RT] and different from [PPY].

One final comment. In this introduction we have formulated the Main Theorem
assuming either that λ1 ≥ · · · ≥ λn or that λ1 ≤ · · · ≤ λn. Presumably most
readers will prefer the former choice. However in the remainder of the article
we will only actually prove the results in the latter situation, since that is the
convention adopted in [BK2]–[BK4]. This is justified because the two formulations
of the Main Theorem are simply equivalent, by an elementary argument involving
twisting with an antiautomorphism of U(g) of the form ei,j 7→ −ei′,j′ + δi,jc.

The remainder of the article is organized as follows. In §2, we derive a new
“quantum determinant” formula for the central elements of the shifted Yangians.
In §3 we descend from there to the universal enveloping algebra U(ge) to prove
that the elements zr are indeed central. Then in §4 we prove the freeness of
S(ge)ge by restricting to a carefully chosen slice.

2. Shifted quantum determinants

The shifted Yangian Yn(σ) is defined in [BK2]. Here are some of the details. Let
σ = (si,j)1≤i,j≤n be an n× n shift matrix, that is, all its entries are non-negative
integers and si,j + sj,k = si,k whenever |i − j| + |j − k| = |i − k|. Then Yn(σ) is
the associative algebra over F defined by generators

{D(r)
i | 1 ≤ i ≤ n, r > 0},

{E(r)
i | 1 ≤ i ≤ n, r > si,i+1},

{F (r)
i | 1 ≤ i ≤ n, r > si+1,i}

subject to certain relations. See [BK2, §2] for the full set.
For 1 ≤ i < j ≤ n and r > si,j , define elements E

(r)
i,j ∈ Yn(σ) recursively by

E
(r)
i,i+1 := E

(r)
i , E

(r)
i,j := [E(r−sj−1,j)

i,j−1 , E
(sj−1,j+1)
j−1 ]. (2.1)

Similarly, for 1 ≤ i < j ≤ n and r > sj,i define elements F
(r)
i,j ∈ Yn(σ) by

F
(r)
i,i+1 := F

(r)
i , F

(r)
i,j := [F (sj,j−1+1)

j−1 , F
(r−sj,j−1)
i,j−1 ]. (2.2)

As in [BK3, §2], we introduce a new set of generators for Yn(σ). For 1 ≤ i < j ≤ n
define the power series Ei,j(u), Fi,j(u) ∈ Yn(σ)[[u−1]] by

Ei,j(u) :=
∑

r>si,j

E
(r)
i,j u−r, Fi,j(u) :=

∑
r>sj,i

F
(r)
i,j u−r, (2.3)

and set Ei,i(u) = Fi,i(u) = 1 by convention. Also define

Di(u) :=
∑
r≥0

D
(r)
i u−r ∈ Yn(σ)[[u−1]],

for 1 ≤ i ≤ n, where D
(0)
i = 1 by convention. Let D(u) denote the n×n diagonal

matrix with ii-entry Di(u) for 1 ≤ i ≤ n, let E(u) denote the n × n upper
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triangular matrix with ij-entry Ei,j(u) for 1 ≤ i ≤ j ≤ n, and let F (u) denote the
n × n lower triangular matrix with ji-entry Fi,j(u) for 1 ≤ i ≤ j ≤ n. Consider
the product

T (u) = F (u)D(u)E(u)
of matrices with entries in Yn(σ)[[u−1]]. The ij-entry of the matrix T (u) defines
a power series

Ti,j(u) =
∑
r≥0

T
(r)
i,j u−r :=

min (i,j)∑
k=1

Fk,i(u)Dk(u)Ek,j(u) (2.4)

for some new elements T
(r)
i,j ∈ Yn(σ). Note that T

(0)
i,j = δi,j and T

(r)
i,j = 0 for

0 < r ≤ si,j .
If the matrix σ is the zero matrix, we denote Yn(σ) simply by Yn. The algebra

Yn is the Yangian associated to the Lie algebra gln(F ); see [MNO, §1] for its
usual definition. In general, by [BK2, Corollary 2.2], there exists an injection
Yn(σ) ↪→ Yn which sends the elements D

(r)
i , E

(r)
i , and F

(r)
i in Yn(σ) to the elements

with the same name in Yn. However, this injection usually does not send all the
elements E

(r)
i,j , F

(r)
i,j and T

(r)
i,j of Yn(σ) to the elements with the same name in Yn.

For the remainder of this section we will use this injection to identify Yn(σ) with
a subalgebra of Yn. To avoid confusion the elements E

(r)
i,j , F

(r)
i,j , and T

(r)
i,j of Yn(σ)

will be denoted σE
(r)
i,j , σF

(r)
i,j , and σT

(r)
i,j respectively, while E

(r)
i,j , F

(r)
i,j , and T

(r)
i,j will

refer to the elements of Yn. Similarly we write σEi,j(u), σFi,j(u) and σTi,j(u) for
the power series (2.3)–(2.4) computed in Yn(σ)[[u−1]] to distinguish them from
their counterparts in Yn[[u−1]].

For an n× n matrix A = (ai,j)1≤i,j≤n with entries in some associative (but not
necessarily commutative) algebra, we define its column determinant

cdet A :=
∑

w∈Sn

sgn(w)aw1,1aw2,2 · · · awn,n. (2.5)

For 1 ≤ j ≤ n, we define a left j-minor of A to be a j × j submatrix of the form
ai1,1 ai1,2 · · · ai1,j

ai2,1 ai2,2 · · · ai2,j
...

...
. . .

...
aij ,1 aij ,2 · · · aij ,j


for 1 ≤ i1 < i2 < · · · < ij ≤ n. The following lemma is an easy exercise.

Lemma 2.1. If for a fixed 1 ≤ j ≤ n, the cdet of every left j-minor of an n× n
matrix A with entries in some associative algebra is zero then cdet A = 0.

By [MNO, Theorem 2.10], it is known that the coefficients of the power series

Cn(u) := cdet


T1,1(u) T1,2(u− 1) · · · T1,n(u− n + 1)
T2,1(u) T2,2(u− 1) · · · T2,n(u− n + 1)

...
...

. . .
...

Tn,1(u) Tn,2(u− 1) · · · Tn,n(u− n + 1)

 (2.6)
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belong to the center of Yn. Define

σCn(u) := cdet


σT1,1(u) σT1,2(u− 1) · · · σT1,n(u− n + 1)
σT2,1(u) σT2,2(u− 1) · · · σT2,n(u− n + 1)

...
...

. . .
...

σTn,1(u) σTn,2(u− 1) · · · σTn,n(u− n + 1)

 . (2.7)

The goal in the remainder of the section is to prove the following theorem. Note
this result is false without the assumption that σ is upper triangular.

Theorem 2.2. Assuming that the shift matrix σ is upper triangular, i.e. si,j = 0
for i > j, we have that σCn(u) = Cn(u), equality in Yn[[u−1]]. In particular, the
coefficients of the power series σCn(u) belong to the center of Yn(σ).

For the proof, assume from now on that σ is upper triangular. For 0 ≤ j ≤ n,
let Xj be the n × n matrix whose first j columns are the same as the first j
columns of the matrix in (2.6) and whose last (n− j) columns are the same as the
last (n− j) columns of the matrix in (2.7). In this notation, the theorem asserts
that cdet X0 = cdet Xn. So we just need to check for each j = 1, . . . , n that

cdet Xj−1 = cdet Xj . (2.8)

To see this, fix j and let v := u − j + 1 for short. Given a column vector ~a of
height n, let X(~a) be the matrix obtained from Xj by replacing the jth column
by ~a. For 1 ≤ k ≤ j, introduce the following column vectors:

~a :=


σT1,j(v)
σT2,j(v)

...
σTn,j(v)

 , ~bk :=


T1,k(v)
T2,k(v)

...
Tn,k(v)

 , ~ck :=



0
...
0

Dk(v)
Fk,k+1(v)Dk(v)

...
Fk,n(v)Dk(v)


.

Also define
d1,k

d2,k
...

dk−1,k

 :=


T1,1(v) T1,2(v) · · · T1,k−1(v)
T2,1(v) T2,2(v) · · · T2,k−1(v)

...
...

. . .
...

Tk−1,1(v) Tk−1,2(v) · · · Tk−1,k−1(v)


−1

T1,k(v)
T2,k(v)

...
Tk−1,k(v)


and set ek := σEk,j(v). In particular, ej = 1.

Lemma 2.3. ~a =
j∑

k=1

~ckek.

Proof. In view of the assumption that σ is upper triangular, we have by (2.2)–
(2.3) that σFi,j(v) = Fi,j(v) for all 1 ≤ i ≤ j ≤ n. Now the lemma follows from
the definition (2.4). �
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Lemma 2.4. For 1 ≤ k ≤ j, we have that ~ck = ~bk −
k−1∑
l=1

~bldl,k.

Proof. Take 1 ≤ i ≤ n and consider the ith entry of the column vectors on
either side of the equation. If i ≥ k then we need to show that Fk,i(v)Dk(v) =
Ti,k(v) −

∑k−1
l=1 Ti,l(v)dl,k, which is immediate from the identity [BK1, (5.4)]. If

i < k then we need to show that 0 = Ti,k(v)−
∑k−1

l=1 Ti,l(v)dl,k. To see this, note
by the definition of dl,k that

∑k−1
l=1 Ti,l(v)dl,k is equal to the matrix product

(
Ti,1(v) · · · Ti,k−1(v)

)


T1,1(v) T1,2(v) · · · T1,k−1(v)
T2,1(v) T2,2(v) · · · T2,k−1(v)

...
...

. . .
...

Tk−1,1(v) Tk−1,2(v) · · · Tk−1,k−1(v)


−1

T1,k(v)
T2,k(v)

...
Tk−1,k(v)

.

The left hand row vector is the ith row of the matrix being inverted, so this
product does indeed equal Ti,k(v). �

Lemma 2.5. For any 1 ≤ k ≤ j − 1 and any f , we have that cdet X(~bkf) = 0.

Proof. We apply Lemma 2.1. Take 1 ≤ i1 < · · · < ij ≤ n. The corresponding left
j-minor of X(~bkf) is equal to

Ti1,1(u) Ti1,2(u− 1) · · · Ti1,j−1(u− j + 2) Ti1,k(u− j + 1)f
Ti2,1(u) Ti2,2(u− 1) · · · Ti2,j−1(u− j + 2) Ti2,k(u− j + 1)f

...
...

. . .
...

...
Tij ,1(u) Tij ,2(u− 1) · · · Tij ,j−1(u− j + 2) Tij ,k(u− j + 1)f

 .

The cdet of this matrix is zero by [BK1, (8.4)]. �

Now we can complete the proof of Theorem 2.2. Since cdet is linear in each
column, we have by Lemmas 2.3-2.5 that

cdet X(~a) =
j∑

k=1

cdet X(~bkek)−
j∑

k=1

k−1∑
l=1

cdet X(~bldl,kek) = cdetX(~bj).

Since Xj−1 = X(~a) and Xj = X(~bj), this verifies (2.8) hence the theorem.

3. The central elements zr

For the remainder of the article, λ = (λ1, . . . , λn) denotes a fixed composition
of N such that λ1 ≤ · · · ≤ λn and σ = (si,j)1≤i,j≤n denotes the upper triangular
shift matrix defined by si,j := λj −min(λi, λj). Let g = glN (F ) and e ∈ g be the
nilpotent matrix consisting Jordan blocks of sizes λ1, . . . , λn down the diagonal.
Recall from the introduction that the centralizer ge of e in g has basis

{ei,j;r | 1 ≤ i, j ≤ n, si,j ≤ r < λj} (3.1)

where ei,j;r is the element defined by (1.1). We will view ge as a Z-graded Lie
algebra by declaring that the basis element ei,j;r is of degree r. There is an induced
Z-grading on the universal enveloping algebra U(ge).
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In this section we are going to prove that the elements z1, . . . , zN of U(ge) from
(1.3) actually belong to the center Z(ge) of U(ge) by exploiting the relationship
between U(ge) and the finite W -algebra W (λ) associated to e. According to the
definition followed here, W (λ) is the quotient of the shifted Yangian Yn(σ) by
the two-sided ideal generated by the elements

{
D

(r)
1

∣∣ r > λ1

}
. This is not the

usual definition of the finite W -algebra, but it is equivalent to the usual definition
thanks to the main result of [BK2]. The notation T

(r)
i,j will from now on denote

the canonical image in the quotient algebra W (λ) of the element T
(r)
i,j ∈ Yn(σ)

from (2.4) (which was also denoted σT
(r)
i,j in the previous section). Recall that

T
(r)
i,j = 0 for 0 < r < si,j . In addition, now that we have passed to the quotient

W (λ), the following holds by [BK3, Theorem 3.5].

Lemma 3.1. T
(r)
i,j = 0 for all r > λj.

So the power series Ti,j(u) :=
∑

r≥0 T
(r)
i,j u−r ∈ W (λ)[[u−1]] is actually a poly-

nomial and uλjTi,j(u) belongs to W (λ)[u]. Hence

cdet


uλ1T1,1(u) (u− 1)λ2T1,2(u− 1) · · · (u− n + 1)λnT1,n(u− n + 1)
uλ1T2,1(u) (u− 1)λ2T2,2(u− 1) · · · (u− n + 1)λnT2,n(u− n + 1)

...
...

. . .
...

uλ1Tn,1(u) (u− 1)λ2Tn,2(u− 1) · · · (u− n + 1)λnTn,n(u− n + 1)


gives us a well-defined polynomial Z(u) ∈ W (λ)[u]. We have that

Z(u) = uN + Z1u
N−1 + · · ·+ ZN−1u + ZN (3.2)

for elements Z1, . . . , ZN ∈ W (λ).

Lemma 3.2. The elements Z1, . . . , ZN belong to the center Z(W (λ)) of W (λ).

Proof. This follows from Theorem 2.2, because Z(u) is equal to the canonical
image of the power series from (2.7) multiplied by uλ1(u−1)λ2 · · · (u−n+1)λn . �

We define a filtration F0W (λ) ⊆ F1W (λ) ⊆ · · · on W (λ), which we call the
loop filtration, by declaring that each generator T

(r+1)
i,j is of filtered degree r. In

other words, FrW (λ) is the span of all monomials of the form T
(r1+1)
i1,j1

· · ·T (rk+1)
ik,jk

such that r1 + · · · + rk ≤ r. For an element x ∈ FrW (λ), we write grr x for the
canonical image of x in the rth graded component of the associated graded algebra
grW (λ). Applying the PBW theorem for W (λ) from [BK3, Lemma 3.6], it follows
that the loop filtration as defined here coincides with the filtration defined at the
beginning of [BK4, §3]. So we can restate [BK4, Lemma 3.1] as follows.

Lemma 3.3. There is a unique isomorphism of graded algebras

ϕ : grW (λ) ∼−→ U(ge)

such that ϕ(grr T
(r+1)
i,j ) = (−1)rei,j;r for all 1 ≤ i, j ≤ n and si,j ≤ r < λj.
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Let (d1, . . . , dN ) be the sequence of invariant degrees defined in the first para-
graph of the introduction. Recall also the elements z1, . . . , zN of U(ge) defined
by the equation (1.3). The goal in the remainder of the section is to prove the
following theorem.

Theorem 3.4. For r = 1, . . . , N , the element Zr ∈ Z(W (λ)) belongs to Fr−drW (λ)
and ϕ(grr−dr

Zr) = (−1)r−drzr. In particular, the elements z1, . . . , zN belong to
the center Z(ge) of U(ge).

To prove the theorem, we begin with several lemmas.

Lemma 3.5. For r = 1, . . . , N , we have that

Zr =
∑
µ⊆λ
|µ|=r

∑
ν⊆µ

[(
n∏

i=1

(1− i)µi−νi

(
λi − νi

λi − µi

))
×

(∑
w∈Sn

sgn(w)T (ν1)
w1,1 · · ·T

(νn)
wn,n

)]
.

Proof. Before we begin, we point out that when i = 1 the term (1 − i)µi−νi in
the product on the right hand side should be interpreted as 1 if ν1 = µ1 and as 0
otherwise. Write coeffr (f(u)) for the ur-coefficient of a polynomial f(u). By the
definitions (2.5) and (3.2), we have that

Zr =
∑

w∈Sn

sgn(w) coeffN−r

(
uλ1Tw1,1(u)× · · · × (u− n + 1)λnTwn,n(u− n + 1)

)
=
∑
µ⊆λ
|µ|=r

∑
w∈Sn

sgn(w) coeffλ1−µ1(u
λ1Tw1,1(u))× · · ·×

coeffλn−µn((u− n + 1)λnTwn,n(u− n + 1)).
Moreover for i = 1, . . . , n we have that

coeffλi−µi
((u− i + 1)λiTwi,i(u− i + 1)) =

µi∑
νi=0

(1− i)µi−νi

(
λi − νi

λi − µi

)
T

(νi)
wi,i .

Substituting into the preceding formula for Zr gives the conclusion. �

Lemma 3.6. Suppose µ = (µ1, . . . , µn) and ν = (ν1, . . . , νn) are compositions
with ν ⊆ µ. We have that |ν| − `(ν) ≤ |µ| − `(µ) with equality if and only if for
each i = 1, . . . , n either νi = µi or νi = 0 = µi − 1.

Proof. Obvious. �

Lemma 3.7. For r = 1, . . . , N , we have that dr = min{`(µ) | µ ⊆ λ, |µ| = r}.

Proof. Set d := dr and s := r − λn − λn−1 − · · · − λn−d+2. By the definition of
dr, we have that 1 ≤ s ≤ λn−d+1. The sum of the (d − 1) largest parts of λ is
λn + λn−1 + · · ·+ λn−d+2, which is < r. Hence we cannot find µ ⊆ λ with |µ| = r
and `(µ) < d. On the other hand, µ := (0, . . . , 0, s, λn−d+2, . . . , λn−1, λn) is a
composition with µ ⊆ λ with |µ| = r and `(µ) = d. �

Lemma 3.8. Given 0 6= µ ⊆ λ with `(µ) = d|µ|, let 1 ≤ i1 < · · · < id ≤ n index
the non-zero parts of µ. Then for any w ∈ Sd and j = 1, . . . , d we have that
µij > λij −min(λiwj , λij ).
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Proof. If wj ≥ j, this is clear since the right hand side of the inequality is zero. So
suppose that wj < j, when the right hand side of the inequality equals λij −λiwj .
Assume for a contradiction that µij ≤ λij − λiwj . Then we have that

|µ| =
d∑

k=1

µik ≤

(
d∑

k=1

λik

)
− λiwj .

Since iwj = ik for some k = 1, . . . , d, this implies that there exists a composition
ν ⊆ λ with |ν| = |µ| and `(ν) = d− 1. This contradicts Lemma 3.7. �

Now we can prove the theorem. The term T
(ν1)
w1,1 · · ·T

(νn)
wn,n in the expansion of Zr

from Lemma 3.5 belongs to F|ν|−`(ν)W (λ). If ν ⊆ µ ⊆ λ and |µ| = r, Lemmas 3.6–
3.7 imply that |ν| − `(ν) ≤ |µ| − `(µ) = r − `(µ) ≤ r − dr. This shows that Zr

belongs to Fr−drW (λ). Moreover, to compute grr−dr
Zr we just need to consider

the terms in the expansion of Zr that have `(µ) = dr and for each i = 1, . . . , n
either νi = µi or νi = 0 = µi − 1. We deduce from Lemma 3.5 that

grr−dr
Zr =

∑
µ⊆λ

|µ|=r,`(µ)=dr

∑
w∈Sn

sgn(w) grr−dr

(
T̃

(µ1)
w1,1 · · · T̃

(µn)
wn,n

)

where T̃
(r)
i,j := T

(r)
i,j + δi,jδr,1(1− i)λi. Since T̃

(0)
wi,i = 0 unless wi = i, we can further

simplify this expression as follows. Let d := dr for short and given µ ⊆ λ with
`(µ) = d define 1 ≤ i1 < · · · < id ≤ n so that µi1 , . . . , µid 6= 0. Then

grr−d Zr =
∑
µ⊆λ

|µ|=r,`(µ)=d

∑
w∈Sd

sgn(w)
(
grµi1

−1 T̃
(µi1

)

iw1,i1

)
· · ·
(
grµid

−1 T̃
(µid

)

iwd,id

)
.

Finally applying the isomorphism ϕ from Lemma 3.3, we get that

ϕ(grr−d Zr) =
∑
µ⊆λ

|µ|=r,`(µ)=d

∑
w∈Sd

sgn(w)(−1)µi1
−1ẽiw1,i1;µi1

−1 · · · (−1)µid
−1ẽiwd,id;µid

−1

where ẽi,j;r := grr T̃
(r+1)
i,j . The right hand side is (−1)r−dzr according to the

definitions in the introduction. Noting finally that, since Zr is central in W (λ) by
Lemma 3.2, the element grr−d Zr is central in grW (λ), this completes the proof
of Theorem 3.4.

4. Proof of the main theorem

Now we consider the standard filtration on the universal enveloping algebra
U(ge) and the induced filtration on the subalgebra Z(ge). By the PBW theorem,
the associated graded algebra grU(ge) is identified with the symmetric algebra
S(ge) (generated by ge in degree one). For r = 1, . . . , N , it is immediate from the
definition (1.3) that the central element zr ∈ U(ge) is of filtered degree dr. Let
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xr := grdr
zr ∈ S(ge)ge . Explicitly,

xr =
∑
µ⊆λ

|µ|=r, `(µ)=dr

∑
w∈Sd

sgn(w)eiw1,i1;µi1
−1 · · · eiwd,id;µid

−1 ∈ S(ge) (4.1)

where as usual 1 ≤ i1 < i2 · · · < id ≤ n denote the positions of the non-zero
entries of µ.

Theorem 4.1. The elements x1, . . . , xN are algebraically independent generators
for S(ge)ge.

For the proof, let us from now on identify S(ge) with F [g∗e], the coordinate
algebra of the affine variety g∗e. Let

{fi,j;r | 1 ≤ i, j ≤ n, si,j ≤ r < λj} (4.2)

be the basis for g∗e that is dual to the basis (3.1). By convention, we interpret
fi,j;r as zero if r < si,j . The coadjoint action ad∗ of ge on g∗e is given explicitly by
the formula

(ad∗ei,j;r)(fk,l;s) = δj,lfk,i;s−r − δi,kfj,l;s−r. (4.3)
The induced action of ge on F [g∗e] is defined by (x · θ)(y) = −θ((ad∗x)(y)) for
x ∈ ge, y ∈ g∗e, θ ∈ F [g∗e]. It is for this action that the invariant subalgebra S(ge)ge

is identified with F [g∗e]
ge . Introduce the affine subspace

S := f + V (4.4)

of g∗e, where f := f1,2;λ2−1+f2,3;λ3−1+· · ·+fn−1,n;λn−1 and V is the N -dimensional
linear subspace spanned by the vectors {fn,i;r | 1 ≤ i ≤ n, 0 ≤ r < λi}. Let

ρ : F [g∗e]
ge → F [S] (4.5)

be the homomorphism defined by restricting functions from g∗e to the slice S.

Lemma 4.2. The elements ρ(x1), . . . , ρ(xN ) are algebraically independent gener-
ators of F [S].

Proof. Take an arbitrary vector

v = f1,2;λ2−1 + f2,3;λ3−1 + · · ·+ fn−1,n;λn−1 +
n∑

j=1

λj−1∑
t=0

aj,tfn,j;t ∈ S.

Since S ∼= AN , the algebra F [S] is freely generated by the coordinate functions
pj,t : v 7→ aj,t for 1 ≤ j ≤ n and 0 ≤ t < λj − 1. Also note for any 1 ≤ i, j ≤ n
and si,j ≤ r < λj that

ei,j;r(v) =

 aj,r if i = n,
1 if j = i + 1 and r = λj − 1,
0 otherwise.

(4.6)

Now fix 1 ≤ r ≤ N . Let d := dr and s := r − λn − λn−1 − · · · − λn−d+2,
so that 1 ≤ s ≤ λn−d+1. We claim that xr(v) = (−1)d−1an−d+1,s−1, hence
ρ(xr) = (−1)d−1pn−d+1,s−1. Since every coordinate function pj,t arises in this way
for a unique r, the lemma clearly follows from this claim.
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To prove the claim, suppose we are given w ∈ Sd and µ ⊆ λ such that |µ| = r,
the non-zero parts of µ are in positions 1 ≤ i1 < · · · < id ≤ n, and the monomial
eiw1,i1;µi1

−1 · · · eiwd,id;µid
−1 from the right hand side of (4.1) is non-zero on v. For

at least one j = 1, . . . , d, we must have that wj ≥ j, and for such a j the fact
that eiwj ,ij ;µij

−1(v) 6= 0 implies by (4.6) that wj = d and id = n. For all other
j 6= k ∈ {1, . . . , d}, we have that wk 6= d hence iwk 6= n. But then the fact that
eiwk,ik;µik

−1(v) 6= 0 implies by (4.6) that ik = iwk+1 and µik = λik . So wj = d and
wk = k−1 for all k 6= j, which means that w = (d d−1 · · · 1) and j = 1. Moreover,
i2 = i1 + 1, i3 = i2 + 1, . . . , id = id−1 + 1 = n, which means that (i1, . . . , id) =
(n − d + 1, . . . , n − 1, n). Hence, µ = (0, . . . , 0, s, λn−d+2, . . . , λn−1, λn). For this
w and µ it is indeed the case that eiw1,i1;µi1

−1 · · · eiwd,i1;µid
−1(v) = an−d+1,s−1 by

(4.6) once more. Since `(w) = d − 1 this and the definition (4.1) implies the
claim. �

Lemma 4.3. ρ is an isomorphism.

Proof. Lemma 4.2 implies that ρ is surjective, so it just remains to prove that
it is injective. Let G := GLN (F ) acting naturally on g by conjugation. Let
Ge be the centralizer of e in G and identify ge with the Lie algebra of Ge, i.e.
tangent space Tι(Ge) to Ge at the identity element ι, as usual. Considering the
coadjoint action Ad∗ of Ge on g∗e, we have that F [g∗e]

Ge = F [g∗e]
ge . To prove that

ρ : F [g∗e]
Ge → F [S] is injective, it suffices to prove that (Ad∗Ge)(S) is dense in

g∗e, i.e. that the map φ : Ge × S → g∗e, (g, x) 7→ (Ad∗g)(x) is dominant. This
follows if we can check that its differential dφ(ι,f) at the point (ι, f) is surjective;
see e.g. [S, Theorem 4.3.6(i)]. Identify the tangent spaces Tf (S) and Tf (g∗e) with
V and g∗e. Then the differential dφ(ι,f) : ge ⊕ V → g∗e is given explicitly by the
map (x, v) 7→ (ad∗x)(f) + v. We show that it is surjective by checking that every
basis element fi,j;r from (4.2) belongs to its image.

To start with, it is easy to see each fn,i;r belongs to the image of dφ(ι,f), since
each of these vectors belongs to V . Next, suppose that 1 ≤ i ≤ j < n and
0 ≤ r < λi. By (4.3), we have that

(ad∗ei,j+1;λj+1−r−1)(f) = fj,i;r − fj+1,i+1;λi+1−λj+1+r.

Using this, we get that all fj,i;r with i ≤ j belong to the image of dφ(ι,f). Finally,
suppose that n ≥ i > j ≥ 1 and λi − λj ≤ r < λi. By (4.3) again, we have that

(ad∗ei−1,j;λi−r−1)(f) =

{
−fj,i;r, if j = 1
fj−1,i−1;λj−λi+r − fj,i;r, if j > 1.

From this we see that all fj,i;r’s with i > j belong to the image of dφ(ι,f) too. This
completes the proof. �

By Lemma 4.2, ρ(x1), . . . , ρ(xN ) are algebraically independent generators for
F [S]. By Lemma 4.3, ρ is an isomorphism. Hence x1, . . . , xN are algebraically
independent generators of F [g∗e]

ge . This completes the proof of Theorem 4.1. Now
we can deduce the Main Theorem from the introduction.
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Corollary 4.4. The elements z1, . . . , zN are algebraically independent generators
for Z(ge).

Proof. It is obvious that grZ(ge) ⊆ S(ge)ge . We have observed already that
z1, . . . , zN ∈ Z(ge) are of filtered degrees d1, . . . , dN respectively, and by Theo-
rem 4.1 the associated graded elements are algebraically independent generators
for S(ge)ge . By a standard filtration argument (see e.g. the proof of [MNO, The-
orem 2.13]), this is enough to deduce that z1, . . . , zN are themselves algebraically
independent generators for Z(ge). At the same time, we have reproved the well-
known equality gr Z(ge) = S(ge)ge . �

To conclude the article, we give one application; see [BK3, Theorem 6.10],
[PPY, Remark 2.1] and the footnote to [P, Question 5.1] for other proofs of this
result. Recall the central elements Z1, . . . , ZN of W (λ) from Lemma 3.2.

Corollary 4.5. The elements Z1, . . . , ZN are algebraically independent generators
for the center of W (λ).

Proof. The loop filtration on W (λ) induces a filtration on Z(W (λ)). Clearly we
have that grZ(W (λ)) ⊆ Z(grW (λ)). By Theorem 3.4, we know that Z1, . . . , ZN ∈
Z(W (λ)) are of filtered degrees 1 − d1, . . . , N − dN respectively, and by Corol-
lary 4.4 the associated graded elements are algebraically independent genera-
tors for Z(ge). Hence Z1, . . . , ZN are algebraically independent generators for
Z(W (λ)). At the same time, we have proved that grZ(W (λ)) = Z(ge). �
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Department of Mathematics, University of Oregon, Eugene, OR 97403.
E-mail address: jbrown8@uoregon.edu, brundan@uoregon.edu


