Some Remarks on Branching Rules and Tensor Products for Algebraic Groups*

Jonathan Brundan ${ }^{\dagger}$ and Alexander Kleshchev ${ }^{\dagger}$

September 23, 2000

1 Introduction and Preliminaries

Let \mathbb{F} be an algebraically closed field of characteristic $p>0$. In [BK1, BK2], we have revealed and exploited various relations between the branching rules from $G L_{n}(\mathbb{F})$ to its Levi subgroups on one hand, and decompositions of tensor products over $G L_{n}(\mathbb{F})$ itself on the other. For example, if L is some irreducible rational $G L_{n}(\mathbb{F})$-module and V is the natural $G L_{n}(\mathbb{F})$-module, there is a close relationship between the highest weight vectors (relative to $G L_{n-1}(\mathbb{F})$) in the restriction $L \downarrow_{G L_{n-1}(\mathbb{F})}$ and the highest weight vectors (relative to $G L_{n}(\mathbb{F})$) in the tensor product $L \otimes V^{*}$. In this paper we obtain more results in this direction, some of which are valid for an arbitrary type.

To describe our main results, we adopt standard Lie theoretic notation. Let G be a (connected) reductive algebraic group over \mathbb{F}. As in $[J], R$ denotes the root system of G with respect to a fixed maximal torus $T, R^{+} \subset R$ denotes the set of positive roots determined by a choice of Borel subgroup B^{+}containing T, and $\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\} \subset R^{+}$is the corresponding base for R. Denote the highest (long) root of R by α_{0} and the longest element of the Weyl group $W=N_{G}(T) / T$ by w_{0}. We write $X(T)$ for the character group $\operatorname{Hom}\left(T, \mathbb{F}^{\times}\right), Y(T)$ for the cocharacter group $\operatorname{Hom}\left(\mathbb{F}^{\times}, T\right)$ and let $\langle\cdot, \cdot\rangle$ be the natural pairing $X(T) \times Y(T) \rightarrow \mathbb{Z}$. For $\alpha \in R, \alpha^{\vee}$ denotes the corresponding coroot in $Y(T)$, and $X^{+}(T)$ denotes the set $\left\{\lambda \in X(T) \mid\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle \geq 0, i=1, \ldots, \ell\right\}$ of dominant weights.

All G-modules are assumed to be rational. For $\lambda \in X^{+}(T)$, we have the G-modules $L(\lambda)$, $\Delta(\lambda)$ and $\nabla(\lambda)$, which are the irreducible, the standard (or Weyl), and the costandard G modules with highest weight λ. Let $\operatorname{Dist}(G)$ be the algebra of distributions of G as in [J, I.7], which is generated by $\operatorname{Dist}(T)$ and the 'divided power' root generators $X_{\alpha}^{(n)}, Y_{\alpha}^{(n)}$ for $\alpha \in R^{+}, n \geq 1$. Write $X_{i}^{(n)}=X_{\alpha_{i}}^{(n)}, Y_{i}=Y_{\alpha_{i}}^{(n)}$ for $i=1, \ldots, \ell$. If G is semisimple and simply connected (which we may assume for the proofs), $\operatorname{Dist}(G)$ coincides with the hyperalgebra of G arising from the Chevalley construction. We note that any G-module is a $\operatorname{Dist}(G)$-module in a natural way; see [J, I.7.11, II.1.20].

Given a weight $\nu \in X(T)$ and a G-module M, M_{ν} will denote the ν-weight space of M. If in addition $\mu \in X^{+}(T)$ is a dominant weight, we define

$$
\left.M^{\mu}:=\left\{v \in M \mid X_{i}^{\left(b_{i}\right)} v=0 \text { for all } b_{i}\right\rangle\left\langle\mu, \alpha_{i}^{\vee}\right\rangle \text { and } i=1,2, \ldots, \ell\right\}
$$

[^0]and let $M_{\nu}^{\mu}:=M^{\mu} \cap M_{\nu}$ denote its ν-weight space. Our first result generalizes a well known fact in characteristic 0 which goes back to Kostant, see [PRV, Theorem 2.1] for a proof in that case. The proof in characteristic p is essentially the same.

Theorem A. Let $\lambda, \mu \in X^{+}(T)$, and M be any G-module. Then

$$
\operatorname{Hom}_{G}(\Delta(\lambda), M \otimes \nabla(\mu)) \cong M_{\lambda-\mu}^{\mu} .
$$

To explain our interest in the theorem, suppose that $M=L(\nu)$ is an irreducible module for some fixed $\nu \in X^{+}(T)$. Then, for μ large relative to ν, we see that $M_{\lambda-\mu}^{\mu}=M_{\lambda-\mu}$, so by the theorem, $L(\nu)_{\lambda-\mu} \cong \operatorname{Hom}_{G}(\Delta(\lambda), L(\nu) \otimes \nabla(\mu))$. So to compute the formal character of $L(\nu)$ it suffices to describe the Hom space in Theorem A for λ, μ large. In view of the universality of standard modules, this is equivalent to describing the highest weight vectors of weight λ in $L(\nu) \otimes \nabla(\mu)$.

We note that $\operatorname{Hom}_{G}(\Delta(\lambda), L(\nu) \otimes \nabla(\mu)) \cong \operatorname{Hom}_{G}\left(L\left(\nu^{*}\right), \nabla\left(\lambda^{*}\right) \otimes \nabla(\mu)\right)$ where ν^{*}, λ^{*} are the dual dominant weights; its dimension is precisely the multiplicity of $L\left(\nu^{*}\right)$ in the socle of $\nabla\left(\lambda^{*}\right) \otimes \nabla(\mu)$. Our next result reveals some extra structure related to restricted weights of the socle of such tensor products. Recall that a dominant weight λ is called p^{r}-restricted if $\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle<p^{r}$ for all $i=1,2, \ldots, \ell$. A semisimple module will be called p^{r}-restricted if all of its composition factors have p^{r}-restricted highest weights.

Theorem B. Let $\mu, \nu \in X^{+}(T)$ and $\alpha_{0} \in R$ be the highest root. If μ is p^{r}-restricted and $\left\langle\nu, \alpha_{0}^{\vee}\right\rangle<p^{r}$ then the socle of $\nabla(\mu) \otimes \nabla(\nu)$ is p^{r}-restricted.

In particular, we note that any miniscule weight ν satisfies the condition in Theorem B for all r. Theorem B is false if we weaken the assumption $\left\langle\nu, \alpha_{0}^{\vee}\right\rangle<p^{r}$ to assume only that ν is p^{r}-restricted; see Remark 3.5 for a counterexample in this case.

Now we specialize to the case that $G=G L(n)=G L_{n}(\mathbb{F})$. As usual, take T to be all diagonal matrices in $G L(n)$ and B^{+}to be all upper triangular matrices. We identify the weight lattice $X(T)$ with the set $X(n)$ of all n-tuples $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ of integers, λ corresponding to the character $\operatorname{diag}\left(t_{1}, \ldots, t_{n}\right) \mapsto t_{1}^{\lambda_{1}} \ldots t_{n}^{\lambda_{n}}$, and $X^{+}(T)$ with the set $X^{+}(n)=\left\{\lambda \in X(n) \mid \lambda_{1} \geq \cdots \geq \lambda_{n}\right\}$. We write $L_{n}(\lambda), \Delta_{n}(\lambda), \nabla_{n}(\lambda)$ for the irreducible, standard and costandard modules, and ε_{i} denotes the weight $(0, \ldots, 0,1,0, \ldots, 0)$ with 1 in the i th position.

The connection between Theorem A and our earlier results [BK1, BK2] arises as follows. Embed $G L(n-1)$ into the top left hand corner of $G L(n)$. If $\mu=-\ell \varepsilon_{n}$ for $\ell \geq 0$, the space $M_{\lambda-\mu}^{\mu}$ appearing in Theorem A is precisely the space of vectors in $M_{\lambda-\mu}$ which are highest weight vectors with respect to the subgroup $G L(n-1)$, satisfying in addition $X_{n-1}^{(b)} v=0$ for any $b>\ell$. By directly constructing the isomorphism appearing in Theorem A, we obtain the following extension of Theorem A to irreducible modules in one important special case.

Theorem C. Fix $\lambda, \mu \in X^{+}(n)$ with $\lambda_{n}=\mu_{n}$. For any submodule M of $\nabla_{n}(\lambda)$,

$$
\operatorname{Hom}_{G L(n)}\left(L_{n}(\mu), M \otimes \nabla_{n}\left(-\ell \varepsilon_{n}\right)\right) \cong \operatorname{Hom}_{G L(n-1)}\left(L_{n-1}(\bar{\mu}), M \downarrow_{G L(n-1)}\right)
$$

where $\ell=\sum_{i=1}^{n}\left(\lambda_{i}-\mu_{i}\right)$ and $\bar{\mu}=\left(\mu_{1}, \ldots, \mu_{n-1}\right)$ denotes the restriction of μ to $T \cap G L(n-1)$.

We believe it is an important problem to describe the socle of $L_{n}(\lambda) \downarrow_{G L(n-1)}$ (which appears in Theorem C if $M=L_{n}(\lambda)$), for any $\lambda \in X^{+}(n)$. We refer to this problem as the modular branching problem for the general linear group. A complete answer only exists in some special cases, namely, the 'first level' and when $L_{n}(\lambda) \downarrow_{G L(n-1)}$ is semisimple; see [K4, B1, BKS]. By the known characteristic 0 branching rule, together with basic properties of good filtrations, the space $\operatorname{Hom}_{G L(n-1)}\left(\Delta_{n-1}(\mu), \nabla_{n}(\lambda) \downarrow_{G L(n-1)}\right)$ is 0 unless $\lambda_{i+1} \leq \mu_{i} \leq \lambda_{i}$ for $i=1, \ldots, n-1$, when it is 1-dimensional. Hence, each of the three spaces

$$
\begin{gathered}
\operatorname{Hom}_{G L(n-1)}\left(\Delta_{n-1}(\mu), L_{n}(\lambda) \downarrow_{G L(n-1)}\right), \\
\operatorname{Hom}_{G L(n-1)}\left(L_{n-1}(\mu), \nabla_{n}(\lambda) \downarrow_{G L(n-1)}\right), \\
\operatorname{Hom}_{G L(n-1)}\left(L_{n-1}(\mu), L_{n}(\lambda) \downarrow_{G L(n-1)}\right)
\end{gathered}
$$

are at most 1-dimensional, the last of which computes the socle. Moreover, the last Hom space is non-zero if and only if both of the first two are non-zero.

Our final result, which is a consequence of Theorem C, reduces the problem of calculating any of the three Hom spaces to just the first. We are not aware of a direct proof of Theorem D working only with branching rules.

Theorem D. Fix $\lambda \in X^{+}(n)$ and $\mu \in X^{+}(n-1)$ such that $\lambda_{i+1} \leq \mu_{i} \leq \lambda_{i}$ for $1 \leq i \leq n-1$. Let $\overline{\lambda^{*}}=\left(-\lambda_{n},-\lambda_{n-1}, \ldots,-\lambda_{2}\right) \in X^{+}(n-1)$ and $\tilde{\mu}^{*}=\left(-\lambda_{n},-\mu_{n-1}, \ldots,-\mu_{1}\right) \in X^{+}(n)$. Then,

$$
\operatorname{Hom}_{G L(n-1)}\left(L_{n-1}(\mu), \nabla_{n}(\lambda) \downarrow_{G L(n-1)}\right) \cong \operatorname{Hom}_{G L(n-1)}\left(\Delta_{n-1}\left(\overline{\lambda^{*}}\right), L_{n}\left(\tilde{\mu}^{*}\right) \downarrow_{G L(n-1)}\right) .
$$

Consequently, $L_{n-1}(\mu)$ lies in the socle of $L_{n}(\lambda) \downarrow_{G L(n-1)}$ if and only if both

$$
\operatorname{Hom}_{G L(n-1)}\left(\Delta_{n-1}(\mu), L_{n}(\lambda) \downarrow_{G L(n-1)}\right) \quad \text { and } \quad \operatorname{Hom}_{G L(n-1)}\left(\Delta_{n-1}\left(\overline{\lambda^{*}}\right), L_{n}\left(\tilde{\mu}^{*}\right) \downarrow_{G L(n-1)}\right)
$$

are non-zero.
In particular, Theorem D means that to calculate the socle of $L_{n}(\lambda) \downarrow_{G L(n-1)}$ for all λ, it is sufficient to calculate the space of $G L(n-1)$-highest weight vectors in $L_{n}(\lambda)$ for all λ, or equivalently, the socle of $L_{n}(\lambda) \downarrow_{B^{+} \cap G L(n-1)}$. In [B2, §5.3], the first author described an algorithm for calculating the space of highest weight vectors in $L_{n}(\lambda) \downarrow_{G L(n-1)}$. This is computationally intensive, depending on first calculating the Gram matrix for the contravariant form on certain weight spaces of Weyl modules, so is viable only for partitions of size $|\lambda|<12$. Combining this with Theorem D means it is now possible to compute explicitly the socle of $L_{n}(\lambda) \downarrow_{G L(n-1)}$ for small λ.

Finally, we remark that there is an analogue of Theorem B for the branching problem: if $\lambda \in X^{+}(n)$ is p^{r}-restricted, the socle of $\nabla_{n}(\lambda) \downarrow_{G L(n-1)}$ is also p^{r}-restricted. This is a generalization of [K1, Theorem B] (for type A), where this was proved with $\nabla_{n}(\lambda)$ replaced by $L_{n}(\lambda)$. In fact, the proof of the more general version is identical to the proof in [K1], combined with Lemma 3.2 from this paper.

2 Proof of Theorem A

We will assume throughout the section that G is semisimple and simply connected. Theorem A (and Theorem B) as stated in the introduction reduce to this case by standard arguments.

The point is that then, the algebra of distributions $\operatorname{Dist}(G)$ can be identified with the hyperalgebra U of G, so can be constructed explicitly by first choosing a Chevalley system $\left(x_{\alpha}\right)_{\alpha \in R},\left(h_{i}\right)_{1 \leq i \leq \ell}$ in the corresponding semisimple Lie algebra \mathfrak{g} over \mathbb{C}, then taking the \mathbb{Z}-subalgebra $U_{\mathbb{Z}}$ of the universal enveloping algebra of \mathfrak{g} generated by all x_{α}^{k} / k !, and finally setting $U=U_{\mathbb{Z}} \otimes F$; see [J, II.1.12] and $[\mathrm{S}]$. The elements $X_{\alpha}^{(n)}, Y_{\alpha}^{(n)} \in \operatorname{Dist}(G)$ coincide with $\left(x_{\alpha}^{n} / n!\right) \otimes 1,\left(x_{-\alpha}^{n} / n!\right) \otimes 1 \in U$ respectively, for $\alpha \in R^{+}$.

By [J, II.1.20], there is an equivalence of categories between the category of all G-modules and the category of locally finite U-modules. We denote by U^{+}(resp. U^{-}) the subalgebra of U generated by all $X_{\alpha}^{(k)}\left(\right.$ resp. $\left.Y_{\alpha}^{(k)}\right)$ for $\alpha \in R^{+}, k \geq 0$. Also, let U^{0} be the subalgebra generated by all

$$
\binom{H_{i}}{k}:=\frac{h_{i}\left(h_{i}-1\right) \ldots\left(h_{i}-k+1\right)}{k!} \otimes 1
$$

for $1 \leq i \leq \ell$ and $k \geq 0$. Kostant's \mathbb{Z}-form for $U_{\mathbb{Z}}[S$, Theorem 2] gives a PBW type basis for each of U, U^{-}, U^{0} and U^{+}, on tensoring with \mathbb{F}.

We call a weight vector v in a G-module a highest weight vector if it is annihilated by all $X_{\alpha}^{(k)}$ for $\alpha \in R^{+}, k \geq 1$. The following fundamental result can be found in [J, II.2.13b)].
2.1. (Universality of standard modules) The module $\Delta(\mu)$ is generated by any highest weight vector v_{μ} of weight μ, and, moreover, any G-module generated by a highest weight vector of weight μ is a quotient of $\Delta(\mu)$.

We will often regard elements of $X(T)$ as homomorphisms $U^{0} \rightarrow \mathbb{F}$. For a dominant weight μ let

$$
\begin{array}{r}
X(\mu):=\left\{X_{i}^{\left(b_{i}\right)} \mid 1 \leq i \leq \ell, b_{i}>\left\langle\mu, \alpha_{i}^{\vee}\right\rangle\right\}, \\
Y(\mu):=\left\{Y_{i}^{\left(b_{i}\right)} \mid 1 \leq i \leq \ell, b_{i}>\left\langle\mu, \alpha_{i}^{\vee}\right\rangle\right\}, \\
\Omega(\mu):=\left\{X_{\alpha}^{\left(b_{\alpha}\right)}, H-\mu(H) \mid \alpha \in R^{+}, b_{\alpha} \geq 1, H \in U^{0}\right\} .
\end{array}
$$

The next lemma is well known. We prove it for completeness as we could not find a proof in the literature.
2.2. Lemma. For $\mu \in X^{+}(T)$, let $I(\mu)$ be the left ideal of U generated by $Y(\mu) \cup \Omega(\mu)$. Then, $\Delta(\mu) \cong U / I(\mu)$.

Proof. Let v_{μ} be a highest weight vector in $\Delta(\mu)$ of weight μ. Consider the U-module homomorphism $U \rightarrow \Delta(\mu), u \mapsto u v_{\mu}$. As $U v_{\mu}=\Delta(\mu)$ and $I(\mu) v_{\mu}=0$, this homomorphism yields a surjection $U / I(\mu) \rightarrow \Delta(\mu)$. By the universality of standard modules and the equivalence of categories between locally finite U-modules and G-modules, it suffices to prove that $V(\mu):=U / I(\mu)$ is finite dimensional.

We prove this as in [H2, 21.4] by showing that the weights of $V(\mu)$ are permuted by the Weyl group W associated to the root $\operatorname{system} R$. Let $s_{i} \in W$ be the simple reflection corresponding to α_{i}. Since W is generated by its simple reflections, we just need to prove that $s_{i} \nu$ is a weight of $V(\mu)$ whenever ν is a weight of $V(\mu)$.

Take $0 \neq v \in V(\mu)_{\nu}$. Our goal is to establish that $X_{i}^{(k)} v=Y_{i}^{(k)} v=0$ for $k \gg 0$. Then the vector $\exp \left(X_{i}\right) \exp \left(-Y_{i}\right) \exp \left(X_{i}\right) v$ will be a well-defined non-zero vector of weight
$s_{i} \nu$. Note that $\nu+k \alpha_{i}$ is not a weight of $V(\mu)$ for k large enough, so $X_{i}^{(k)} v=0$ for such k. To prove the claim for Y_{i} we may assume, using the PBW type basis for U^{-}, that $v=Y_{\beta_{1}}^{\left(b_{1}\right)} \ldots Y_{\beta_{m}}^{\left(b_{m}\right)}+I(\mu)$ where $\left\{\beta_{1}, \ldots, \beta_{m}\right\}$ are the positive roots.

By induction on $b_{1}+\cdots+b_{m}$ we now show that $Y_{i}^{(k)} Y_{\beta_{1}}^{\left(b_{1}\right)} \ldots Y_{\beta_{m}}^{\left(b_{m}\right)} \in I(\mu)$ if $k>$ $3\left(b_{1}+\cdots+b_{m}\right)+\mu_{i}$. If $b_{1}+\cdots+b_{m}=0$ this is clear as $Y_{i}^{(k)} \in I(\mu)$ for $k>\mu_{i}$. For the inductive step, let $r=\min \left\{s \mid b_{s}>0\right\}$. To apply the inductive hypothesis it suffices to note that $Y_{i}^{(k)} Y_{\beta_{r}}^{\left(b_{r}\right)}$ is a linear combination of elements of the form $u_{j} Y_{i}^{(k-j)}$ where $j \leq 3 b_{r}$, which follows for example by [K1, 1.8(ii)].

Lemma 2.2 gives generators and relations for $\Delta(\mu)$ as a U-module. However, to prove Theorem A, we need generators and relations for $\Delta(\mu)$ as a U^{+}-module.
2.3. Lemma. For $\mu \in X^{+}(T)$, let $I^{-}(\mu)$ be the left ideal of U^{-}generated by $Y(\mu)$. Then, $\Delta(\mu) \downarrow_{U^{-}} \cong U^{-} / I^{-}(\mu)$.

Proof. Let $J(\mu)$ denote the left ideal of U generated by $\Omega(\mu)$. Then, $Z(\mu):=U / J(\mu)$ is the Verma module of highest weight μ. Using the PBW type bases, the map $\theta: U^{-} \rightarrow$ $Z(\mu), Y \mapsto Y+J(\mu)$ is an isomorphism of U^{-}-modules. Lemma 2.2 implies that $\Delta(\mu) \cong$ $Z(\mu) / F(\mu)$ where $F(\mu)$ is the image of $I(\mu)$ in $Z(\mu)$. So it suffices to show that θ maps $I^{-}(\mu)$ onto $F(\mu)$, or equivalently, that $U Y(\mu) \subseteq U^{-} Y(\mu)+J(\mu)$.

We can write $U=U^{-} U^{+} U^{0}$ by [S, Theorem 2]. Clearly, elements of U^{0} applied to the elements of $Y(\mu)$ change them to proportional ones. So we just need to prove that for any $X \in U^{+}$, the element $X Y_{i}^{(b)}$ belongs to $U^{-} Y(\mu)+J(\mu)$ providing $\left.b\right\rangle\left\langle\mu, \alpha_{i}^{\vee}\right\rangle$. We may assume that $X=X_{\alpha}^{(a)}$ for some $\alpha \in R^{+}, a \geq 1$. If $\alpha \neq \alpha_{i}$, the weight $a \alpha-b \alpha_{i}$ is not a sum of negative roots, so $X_{\alpha}^{(a)} Y_{i}^{(b)}$ lies in $J(\mu)$. So we may assume that $\alpha=\alpha_{i}$ is a simple root, and moreover, by weights, that $a \leq b$. Then, using [S, Lemma 5], we get

$$
X_{i}^{(a)} Y_{i}^{(b)}+J(\mu)=Y_{i}^{(b-a)}\binom{H_{i}-b-a+2 a}{a}+J(\mu)=Y_{i}^{(b-a)}\binom{\left\langle\mu, \alpha_{i}^{\vee}\right\rangle-(b-a)}{a}+J(\mu) .
$$

If $b-a\rangle\left\langle\mu, \alpha_{i}^{\vee}\right\rangle$ we have $Y_{i}^{(b-a)} \in Y(\mu)$. Otherwise $\left\langle\mu, \alpha_{i}^{\vee}\right\rangle-(b-a)$ is a non-negative integer strictly less than a, so $\binom{\left\langle\mu, \alpha_{i}^{\vee}\right\rangle-(b-a)}{a}=0$.
2.4. Corollary. For $\mu \in X^{+}(T)$, let $I^{+}(\mu)$ be the left ideal of U^{+}generated by $X(\mu)$. Then, $\Delta(\mu) \downarrow_{U+} \cong U^{+} / I^{+}\left(-w_{0} \mu\right)$.

Proof. Let $n_{0} \in N_{G}(T)$ be any representative of $w_{0} \in W=N_{G}(T) / T$. This acts on U by the adjoint action Ad. Moreover, $\operatorname{Ad} n_{0}$ sends U^{-}isomorphically onto U^{+}and $I^{-}(\mu)$ isomorphically onto $I^{+}\left(-w_{0} \mu\right)$. Using these observations, the result follows immediately from Lemma 2.3.

Recall the definition of $M_{\lambda-\mu}^{\mu}$ from the introduction. Now we can prove Theorem A.
2.5. Theorem. Let $\lambda, \mu \in X^{+}(T)$, and M be any G-module. Then

$$
\operatorname{Hom}_{G}(\Delta(\lambda), M \otimes \nabla(\mu)) \cong M_{\lambda-\mu}^{\mu} .
$$

Proof. Let \mathbb{F}_{λ} be the 1-dimensional B^{+}-module of weight λ, and let $A \triangleleft B^{+}$be the unipotent radical of B^{+}. Using the universality of standard modules we get

$$
\begin{aligned}
\operatorname{Hom}_{G}(\Delta(\lambda), M \otimes \nabla(\mu)) & \cong \operatorname{Hom}_{B^{+}}\left(\mathbb{F}_{\lambda}, M \otimes \nabla(\mu)\right) \\
& \cong\left((M \otimes \nabla(\mu))^{A}\right)_{\lambda} \\
& \cong \operatorname{Hom}_{A}\left(\nabla(\mu)^{*}, M\right)_{\lambda}
\end{aligned}
$$

where the last λ-weight space is taken with respect to the action $(t \cdot \varphi)(f)=t \varphi\left(t^{-1} f\right)$ for $\varphi \in \operatorname{Hom}_{A}\left(\nabla(\mu)^{*}, M\right), f \in \nabla(\mu)^{*}$. Moreover, since $\nabla(\mu)^{*} \cong \Delta\left(-w_{0} \mu\right)$ and $U^{+} \cong \operatorname{Dist}(A)$, [J, I.7.16] implies

$$
\operatorname{Hom}_{A}\left(\nabla(\mu)^{*}, M\right)_{\lambda} \cong \operatorname{Hom}_{U^{+}}\left(\Delta\left(-w_{0} \mu\right), M\right)_{\lambda} .
$$

The natural isomorphism $\operatorname{Hom}_{U^{+}}\left(U^{+}, M\right) \rightarrow M$ combined with Corollary 2.4 induces an isomorphism

$$
F: \operatorname{Hom}_{U^{+}}\left(\Delta\left(-w_{0} \mu\right), M\right) \rightarrow M^{\mu}, \varphi \mapsto \varphi\left(v_{-\mu}\right)
$$

where $v_{-\mu}$ is a lowest weight vector in $\Delta\left(-w_{0} \mu\right)$ of weight $-\mu$. For $t \in T$ and a weight vector $\varphi \in \operatorname{Hom}_{U^{+}}\left(\Delta\left(-w_{0} \mu\right), M\right)_{\lambda}$,

$$
t\left(\varphi\left(v_{-\mu}\right)\right)=t\left(\varphi\left(t^{-1} t v_{-\mu}\right)\right)=(t \cdot \varphi)\left(t v_{-\mu}\right)=(\lambda-\mu)(t) \varphi\left(v_{-\mu}\right) .
$$

Hence, F sends the λ-weight space of $\operatorname{Hom}_{U^{+}}\left(\Delta\left(-w_{0} \mu\right), M\right)$ isomorphically onto the $(\lambda-\mu)-$ weight space of M^{μ}.

3 Proof of Theorem B

Now we turn to the proof of Theorem B, which will ultimately be deduced as a consequence of Steinberg's tensor product theorem. We continue with the notation and assumptions from section 2 ; in particular, G is semisimple and simply connected.
3.1. Lemma. For $\nu \in X^{+}(T)$ and $m \geq 0, \nu-w_{0} \nu \nsupseteq m \alpha_{0}$ if and only if $\left\langle\nu, \alpha_{0}^{\vee}\right\rangle<m$.

Proof. If $\left\langle\nu, \alpha_{0}^{\vee}\right\rangle \geq m$ then $\nu-m \alpha_{0}$ is a weight of $\Delta(\nu)$, hence $\nu-m \alpha_{0} \geq w_{0} \nu$, which is the lowest weight of $\Delta(\nu)$. Hence, $\nu-w_{0} \nu \geq m \alpha_{0}$. Conversely, suppose $\nu-w_{0} \nu \geq m \alpha_{0}$. Then $\nu-w_{0} \nu=m \alpha_{0}+\kappa$ where κ is a sum of positive roots. Now, $\left\langle\nu-w_{0} \nu, \alpha_{0}^{\vee}\right\rangle=$ $m\left\langle\alpha_{0}, \alpha_{0}^{\vee}\right\rangle+\left\langle\kappa, \alpha_{0}^{\vee}\right\rangle \geq m\left\langle\alpha_{0}, \alpha_{0}^{\vee}\right\rangle=2 m$. On the other hand, $\left\langle\nu-w_{0} \nu, \alpha_{0}^{\vee}\right\rangle=\left\langle\nu, \alpha_{0}^{\vee}\right\rangle-$ $\left\langle w_{0} \nu, \alpha_{0}^{\vee}\right\rangle=2\left\langle\nu, \alpha_{0}^{\vee}\right\rangle$, since $\left\langle w_{0} \nu, \alpha_{0}^{\vee}\right\rangle=\left\langle\nu,\left(w_{0}^{-1} \alpha_{0}\right)^{\vee}\right\rangle=\left\langle\nu,\left(w_{0} \alpha_{0}\right)^{\vee}\right\rangle$ and $w_{0} \alpha_{0}=-\alpha_{0}$. Thus, $\left\langle\nu, \alpha_{0}^{\vee}\right\rangle \geq m$.
3.2. Lemma. Let $\lambda \in X^{+}(T)$ be p^{r}-restricted, and $v_{\mu} \in \nabla_{n}(\lambda)$ be a non-zero weight vector of weight μ. If v_{μ} is annihilated by all $X_{\alpha}^{(k)}$ for all $1 \leq k<p^{r}$ and all $\alpha \in R^{+}$, then $\mu=\lambda$.

Proof. We let U_{r} denote the subalgebra of U generated by $\left\{X_{\alpha}^{(k)}, Y_{\alpha}^{(k)}\right\}_{\alpha \in R^{+}, k<p^{r}}$, which is the algebra of distributions of G_{r}, the r th Frobenius kernel of G (see [J, II.3]). The assumptions imply that the U_{r}-module M generated by v_{μ} is non-zero and has all weights less than or equal to μ. Pick $L(\nu)$ lying in the socle of M, so that ν is p^{r}-restricted with $\nu \leq \mu$. Certainly, $\mu \leq \lambda$, so the result will follow if we can show that $\nu=\lambda$.

For this, we claim that $\nabla(\lambda)$ has simple socle $L(\lambda)$ as a U_{r}-module. By the argument of [H1, Proposition 1.1] (which proves the special case $r=1$), $\Delta(\lambda)$ is generated as a $U_{r^{-}}$ module by any highest weight vector of weight λ. This easily implies that $\Delta(\lambda)$ has simple head as a U_{r}-module, hence proving the claim on dualizing.
3.3. Theorem. Fix $\mu, \nu \in X^{+}(T)$ where μ is p^{r}-restricted and $\left\langle\nu, \alpha_{0}^{\vee}\right\rangle<p^{r}$. The socle of $\nabla(\mu) \otimes \nabla(\nu)$ is p^{r}-restricted.
Proof. We say a vector $v \in \nabla(\mu) \otimes \nabla(\nu)$ is weakly primitive if $X_{\alpha}^{(k)} v=0$ for all $\alpha \in R^{+}$ and all k with $0<k<p^{r}$. Fix a weakly primitive weight vector $v \in \nabla(\mu) \otimes \nabla(\nu)$ of weight δ. Write $\delta=\mu+\nu-\kappa$ for some $\kappa \in X(T)$. We first claim that $\kappa \leq \nu-w_{0} \nu$. Write

$$
v=\sum_{\gamma, i, j} x_{\delta-\gamma}^{i} \otimes y_{\gamma}^{j}
$$

summing over $\gamma \in X(T)$ and i, j over index sets I_{γ}, J_{γ} respectively. In this expression, $\left\{x_{\beta}^{i}\right\}_{i \in I_{\beta}}$ and $\left\{y_{\gamma}^{j}\right\}_{j \in J_{\gamma}}$ denote linearly independent vectors of the weight spaces $\nabla(\mu)_{\beta}$ and $\nabla(\nu)_{\gamma}$ respectively. Let γ_{0} be a minimal weight such that $J_{\gamma_{0}}$ is non-empty. Then for any $\alpha \in R^{+}$and any k with $0<k<p^{r}$ we have

$$
\begin{aligned}
0=X_{\alpha}^{(k)} v=\sum_{i, j}(& \left.X_{\alpha}^{(k)} x_{\delta-\gamma_{0}}^{i}\right) \otimes y_{\gamma_{0}}^{j} \\
& +\left[\text { a linear combination of vectors of the form } x_{\beta}^{i} \otimes y_{\gamma}^{j} \text { with } \gamma \not \leq \gamma_{0}\right] .
\end{aligned}
$$

We conclude by linear independence of $\left\{y_{\gamma}^{j}\right\}_{j \in J_{\gamma}}$ that $X_{\alpha}^{(k)} x_{\delta-\gamma_{0}}^{i}=0$ for any $\alpha \in R^{+}$and $0<k<p^{r}$. Since μ is p^{r}-restricted, it follows from Lemma 3.2 that $x_{\delta-\gamma_{0}}^{i}$ is a high weight vector in $\nabla(\mu)$. Thus, $\delta-\gamma_{0}=\mu$, hence $\gamma_{0}=\delta-\mu=\nu-\kappa$. This shows that $\nu-\kappa$ is a weight of $\nabla(\nu)$, so $\nu-\kappa \geq w_{0} \nu$, which implies the claim.

Now, assume for a contradiction that the Steinberg tensor product $L(\lambda) \otimes L\left(\lambda^{\prime}\right)^{[r]}$ is a submodule of $\nabla(\mu) \otimes \nabla(\nu)$ for some p^{r}-restricted λ and some $\lambda^{\prime} \neq 0$. Let v_{λ} and $v_{\lambda^{\prime}}^{+}$be high weight vectors of $L(\lambda)$ and $L\left(\lambda^{\prime}\right)^{[r]}=L\left(p^{r} \lambda^{\prime}\right)$, respectively. Also let $v_{\lambda^{\prime}}^{-}$be the lowest weight vector of $L\left(\lambda^{\prime}\right)^{[r]}$. Then both $v_{\lambda} \otimes v_{\lambda^{\prime}}^{+}$and $v_{\lambda} \otimes v_{\lambda^{\prime}}^{-}$are weakly primitive (in the latter case, this follows by the definition of the action of U on Frobenius twists). The weights of these two vectors are $\lambda+p^{r} \lambda^{\prime}$ and $\lambda+p^{r} w_{0} \lambda^{\prime}$ respectively. Set

$$
\lambda+p^{r} \lambda^{\prime}=\mu+\nu-\kappa_{1}, \quad \lambda+p^{r} w_{0} \lambda^{\prime}=\mu+\nu-\kappa_{2} .
$$

By the claim, we have $\kappa_{2} \leq \nu-w_{0} \nu$. On the other hand, $\kappa_{2}-\kappa_{1}=p^{r}\left(\lambda^{\prime}-w_{0} \lambda^{\prime}\right) \geq p^{r} \alpha_{0}$, the last inequality being true by [K3, Lemma 1.5]. It follows that $\kappa_{2} \geq \kappa_{1}+p^{r} \alpha_{0} \geq p^{r} \alpha_{0}$, whence $\nu-w_{0} \nu \geq p^{r} \tilde{\alpha}$. This contradicts the assumption on ν because of Lemma 3.1.
3.4. Corollary. Let μ be a dominant p^{r}-restricted weight, and ν be any miniscule weight. If M is any submodule of $\nabla(\mu)$ then the socle of $M \otimes L(\nu)$ is p^{r}-restricted. In particular, the socle of $L(\mu) \otimes L(\nu)$ is p^{r}-restricted.

Proof. This follows immediately from Theorem 3.3, since if ν is miniscule then $\left\langle\nu, \alpha^{\vee}\right\rangle$ is 0 or 1 for all $\alpha \in R^{+}$.
3.5. Remark. One might ask whether Theorem 3.3 is true more generally, namely, is it true that the socle of $\nabla(\mu) \otimes \nabla(\nu)$ is p-restricted as long as both $\mu, \nu \in X^{+}(n)$ are p-restricted. We give a counterexample which shows that this is false in general. Consider the 2 -restricted dominant weights $\mu=\nu=3 \varepsilon_{1}+2 \varepsilon_{2}+\varepsilon_{3}$ for $G L(4)$. Put $\lambda=6 \varepsilon_{1}+3 \varepsilon_{2}+2 \varepsilon_{3}+\varepsilon_{4}$. By the Littlewood-Richardson rule and [W], the module $\nabla(\mu) \otimes \nabla(\nu)$ has a ∇-filtration, with $\nabla(\lambda)$ as one of its quotients. Hence there exists a non-zero homomorphism from $\Delta(\lambda)$ to $\nabla(\mu) \otimes \nabla(\nu)$. However, $\nabla(\lambda)$ is irreducible in characteristic 2, as follows e.g. from [K2, $2.2(\mathrm{iv})]$. So we get a non-2-restricted irreducible module in the socle of $\nabla(\mu) \otimes \nabla(\nu)$.

4 Proof of Theorems C and D

From now on, we assume that $G=G L(n)$. In the notation from the introduction, the root system $R \subset X(T)$ is the set $\left\{\varepsilon_{i}-\varepsilon_{j} \mid 1 \leq i, j \leq n\right\}$. For $i<j$, we denote the root $\varepsilon_{i}-\varepsilon_{j}$ by $\alpha(i, j)$. Write $E_{i, j}^{(k)}$ for $X_{\alpha(i, j)}^{(k)}$ and $F_{i, j}^{(k)}$ for $Y_{\alpha(i, j)}^{(k)}$. We fix an integer $\ell \geq 0$ throughout the section.

Let $P=L Y$ be the standard parabolic subgroup of $G L(n)$, where $L \cong G L(n-1) G L(1)$ (embedded diagonally) and Y is the unipotent radical generated by the root subgroups corresponding to the roots $\alpha(i, n)$, for $i=1,2, \ldots n-1$. Note that for any $G L(n)$-module N, the Y-fixed points N^{Y} of N are L-invariant, so we can regard N^{Y} as a $G L(n-1)$-module in a natural way. Also, for $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in X^{+}(n), j \in \mathbb{Z}$ and any submodule M of $\nabla_{n}(\lambda)$, the j th level of M is defined by

$$
M^{j}:=\bigoplus_{\substack{\nu \in X(n), \nu_{n}=\lambda_{n}+j}} M_{\nu}
$$

This is a weight space for the 1-dimensional torus $G L(1)$ that centralizes $G L(n-1)$ in $G L(n)$, so

$$
M \downarrow_{G L(n-1)} \cong \sum_{j \geq 0} M^{j}
$$

4.1. Lemma. Let $\lambda, \mu \in X^{+}(n)$. The dimension of $\operatorname{Hom}_{G L(n)}\left(\Delta_{n}(\mu), \nabla_{n}(\lambda) \otimes \nabla\left(-\ell \varepsilon_{n}\right)\right)$ is 1 if $\mu_{n} \leq \lambda_{n}$ and $\lambda_{i+1} \leq \mu_{i} \leq \lambda_{i}$ for $i=1, \ldots, n-1$, and is 0 otherwise.

Proof. By [W], $\nabla_{n}(\lambda) \otimes \nabla\left(-\ell \varepsilon_{n}\right)$ has a good filtration, so [J, II.4.16a)] implies that the Hom dimension is equal to the multiplicity of $\nabla_{n}(\mu)$ in a good filtration of $\nabla_{n}(\lambda) \otimes \nabla\left(-\ell \varepsilon_{n}\right)$. Now the result follows for example from the Littlewood-Richardson rule.

Let V be the natural $G L(n)$-module, and let $\left\{f_{1}, \ldots, f_{n}\right\}$ be the basis of V^{*} dual to the canonical basis of V. By [J, I.2.16(4)], the module $\nabla\left(-\ell \varepsilon_{n}\right)$ is precisely the ℓ th symmetric power $S^{\ell}\left(V^{*}\right)$. Let $\Lambda(n, \ell)$ be the set of all n-tuples $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of non-negative integers with $\lambda_{1}+\cdots+\lambda_{n}=\ell$. For $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \Lambda(n, \ell)$, we set

$$
\begin{aligned}
f_{\beta} & =f_{1}^{\beta_{1}} \ldots f_{n}^{\beta_{n}} & & \in S^{\ell}\left(V^{*}\right), \\
E(\beta) & =E_{1, n}^{\left(\beta_{1}\right)} E_{2, n}^{\left(\beta_{2}\right)} \ldots E_{n-1, n}^{\left(\beta_{n-1}\right)} & & \in \operatorname{Dist}(G L(n)) .
\end{aligned}
$$

Then $\left\{f_{\beta} \mid \beta \in \Lambda(n, \ell)\right\}$ is a basis for $S^{\ell}\left(V^{*}\right)$, and in particular, the set of weights of $S^{\ell}\left(V^{*}\right)$ is precisely the set $-\Lambda(n, \ell)$, all with multiplicity one. Also if $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right), \gamma=$
$\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \Lambda(n, \ell)$, we write

$$
|\bar{\beta}|=\beta_{1}+\cdots+\beta_{n-1}, \quad \quad\binom{\bar{\gamma}}{\bar{\beta}}=\binom{\gamma_{1}}{\beta_{1}} \cdots\binom{\gamma_{n-1}}{\beta_{n-1}} .
$$

Then for $1 \leq r<s \leq n, t \geq 1$, we have

$$
E_{r, s}^{(t)} f_{\beta}=(-1)^{t}\binom{\beta_{r}}{t} f_{\beta-t \alpha(r, s)} \quad \text { and } \quad F_{r, s}^{(t)} f_{\beta}=(-1)^{t}\binom{\beta_{s}}{t} f_{\beta+t \alpha(r, s)}
$$

(note that $\binom{\beta_{i}}{t}=0$ if $\beta_{i}<t$, so the right hand sides above are interpreted as 0 if $\beta_{r}<t$ or $\beta_{s}<t$, respectively).

Let M be an arbitrary $G L(n)$-module. As $\left\{f_{\beta} \mid \beta \in \Lambda(n, \ell)\right\}$ is a basis of $S^{\ell}\left(V^{*}\right)$, any element $w \in M \otimes S^{\ell}\left(V^{*}\right)$ can be written uniquely in the form

$$
w=\sum_{\beta \in \Lambda(n, r)} w_{\beta} \otimes f_{\beta} .
$$

We refer to w_{β} as the β-component of w. Define a linear map

$$
e: M \rightarrow M \otimes S^{\ell}\left(V^{*}\right), v \mapsto \sum_{\beta \in \Lambda(n, \ell)}(E(\beta) v) \otimes f_{\beta} .
$$

4.2. Lemma. For any $G L(n)$-module M, the map e is an injective $G L(n-1)$-module homomorphism.

Proof. Clearly, e linear. It is injective since the $\ell \varepsilon_{n}$-component of $e(v)$ is v. Let B^{\prime} be the subgroup $B^{+} \cap G L(n-1)$ of all upper triangular matrices in $G L(n-1)$, and W^{\prime} be the subgroup of all permutation matrices in $G L(n-1)$. As B^{\prime} and W^{\prime} generate $G L(n-1)$, it suffices to prove that e is both a B^{\prime}-homomorphism and a W^{\prime}-homomorphism.

To prove that e is a W^{\prime}-homomorphism take σ to be a permutation of $\{1, \ldots, n-1\}$ and denote by the same letter σ the corresponding permutation matrix. Then

$$
\begin{aligned}
\sigma e(v) & =\sigma \sum_{\beta \in \Lambda(n, \ell)} E(\beta) v \otimes f_{\beta}=\sum_{\beta \in \Lambda(n, \ell)}(\sigma E(\beta) v) \otimes\left(\sigma f_{\beta}\right) \\
& =\sum_{\beta \in \Lambda(n, \ell)}\left(\sigma E(\beta) \sigma^{-1} \sigma v\right) \otimes f_{\sigma \beta}=\sum_{\beta \in \Lambda(n, \ell)}(E(\sigma \beta) \sigma v) \otimes f_{\sigma \beta}=e(\sigma v) .
\end{aligned}
$$

To prove that e is a B^{\prime}-homomorphism, we first note that it is a T-homomorphism, which follows from the fact that for $v \in M_{\mu}$, the restriction of the weight of any $(E(\beta) v) \otimes f_{\beta}$ to T is the same as the restriction of μ. So, it suffices to prove that $e\left(E_{r, s}^{(t)} v\right)=E_{r, s}^{(t)} e(v)$ for any $v \in M, 1 \leq r<s \leq n-1$ and $t>0$. First, we note that for $m \geq 0$, the commutator formula from [S, Lemma 15] implies that

$$
\begin{aligned}
E_{r, s}^{(m)} E(\beta) & =E_{r, s}^{(m)} E_{s, n}^{\left(\beta_{s}\right)} E\left(\beta-\beta_{s} \alpha(s, n)\right)=\sum_{i=0}^{\min \left(m, \beta_{s}\right)} E_{r, n}^{(i)} E_{s, n}^{\left(\beta_{s}-i\right)} E_{r, s}^{(m-i)} E\left(\beta-\beta_{s} \alpha(s, n)\right) \\
& =\sum_{i=0}^{\min \left(m, \beta_{s}\right)} E_{r, n}^{(i)} E(\beta-i \alpha(s, n)) E_{r, s}^{(m-i)}=\sum_{i=0}^{\min \left(m, \beta_{s}\right)}\binom{i+\beta_{r}}{i} E(\beta+i \alpha(r, s)) E_{r, s}^{(m-i)} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
E_{r, s}^{(t)} e(v) & =E_{r, s}^{(t)} \sum_{\beta \in \Lambda(n, \ell)}(E(\beta) v) \otimes f_{\beta}=\sum_{\substack{\beta \in \Lambda(n, \ell), 0 \leq m \leq t}}\left(E_{r, s}^{(m)} E(\beta) v\right) \otimes\left(E_{r, s}^{(t-m)} f_{\beta}\right) \\
& =\sum_{\substack{\beta \in \Lambda(n, \ell), 0 \leq m \leq t}} \sum_{i=0}^{\min \left(m, \beta_{s}\right)}(-1)^{t-m}\binom{\beta_{r}}{t-m}\binom{i+\beta_{r}}{i}\left(E(\beta+i \alpha(r, s)) E_{r, s}^{(m-i)} v\right) \otimes f_{\beta-(t-m) \alpha(r, s)} .
\end{aligned}
$$

Fix any $\gamma \in \Lambda(n, \ell)$. Then the γ-component of the above expression is

$$
\sum_{m=\max \left(0, t-\gamma_{s}\right)}^{t} \sum_{i=0}^{\min \left(m, \gamma_{s}-(t-m)\right)}(-1)^{t-m}\binom{\gamma_{r}+t-m}{t-m}\binom{i+\gamma_{r}+t-m}{i} E(\gamma+(t-m+i) \alpha(r, s)) E_{r, s}^{(m-i)} v
$$

which equals

$$
\sum_{j=\max \left(0, t-\gamma_{s}\right)}^{t} c_{j} E(\gamma+(t-j) \alpha(r, s)) E_{r s}^{(j)} v
$$

where $c_{j}=\sum_{m=j}^{t}(-1)^{t-m}\binom{\gamma_{r}+t-m}{t-m}\binom{\gamma_{r}+t-j}{m-j}$. An elementary substitution now shows that $c_{j}=0$ if $j<t$. Hence, the γ-component is $E(\gamma) E_{r, s}^{(t)} v$, proving that $E_{r, s}^{(t)} e(v)=e\left(E_{r, s}^{(t)} v\right)$.
4.3. Lemma. For any $G L(n)$-module M we have $\left(M \otimes S^{\ell}\left(V^{*}\right)\right)^{Y} \subseteq e(M)$.

Proof. Let $w=\sum_{\beta \in \Lambda(n, \ell)} w_{\beta} \otimes f_{\beta} \in\left(M \otimes S^{\ell}\left(V^{*}\right)\right)^{Y}$. We have to show that

$$
w_{\gamma}=E(\gamma) w_{\ell \varepsilon_{n}}
$$

for any $\gamma \in \Lambda(n, \ell)$. We prove this by induction on $|\bar{\gamma}|$. If $|\bar{\gamma}|=0$, the result is clear. Let $|\bar{\gamma}|>0$. Considering the $\ell \varepsilon_{n}$-component of the equation $E(\gamma) w=0$ gives

$$
\sum_{\beta \preceq \gamma}(-1)^{|\bar{\beta}|} E(\gamma-\beta) w_{\beta}=0
$$

where $\beta \preceq \gamma$ means $\beta_{1} \leq \gamma_{1}, \ldots, \beta_{n-1} \leq \alpha_{n-1}$. Now the induction hypothesis gives us

$$
0=\sum_{\beta \prec \gamma}(-1)^{|\bar{\beta}|} E(\gamma-\beta) E(\beta) w_{\ell \varepsilon_{n}}+(-1)^{|\bar{\gamma}|} w_{\gamma}=\sum_{\beta<\gamma}(-1)^{|\bar{\beta}|}\binom{\bar{\gamma}}{\bar{\beta}} E(\gamma) w_{\ell \varepsilon_{n}}+(-1)^{|\bar{\gamma}|} w_{\gamma} .
$$

The lemma now follows from the identity $\sum_{\beta \preceq \gamma}(-1)^{|\bar{\beta}|}\binom{\bar{\gamma}}{\bar{\beta}}=0$.
4.4. Lemma. Let M be a submodule of $\nabla_{n}(\lambda)$. Let $v \in M^{0} \oplus \cdots \oplus M^{\ell}$. Then $e(v) \in$ $\left(M \otimes S^{\ell}\left(V^{*}\right)\right)^{Y}$.

Proof. Let $1 \leq r<n$ and $t>0$. Then

$$
\begin{aligned}
E_{r, n}^{(t)} e(v) & =E_{r, n}^{(t)} \sum_{\beta \in \Lambda(n, \ell)}(E(\beta) v) \otimes f_{\beta}=\sum_{\beta \in \Lambda(n, \ell)} \sum_{m=0}^{t}\left(E_{r, n}^{(t-m)} E(\beta) v\right) \otimes\left(E_{r, n}^{(m)} f_{\beta}\right) \\
& =\sum_{\beta \in \Lambda(n, \ell)} \sum_{m=0}^{\min \left(t, \beta_{r}\right)}\left(\binom{t-m+\beta_{r}}{t-m} E(\beta+(t-m) \alpha(r, n)) v\right) \otimes\left((-1)^{m}\binom{\beta_{r}}{m} f_{\beta-m \alpha(r, n)}\right) .
\end{aligned}
$$

Let $\gamma \in \Lambda(n, \ell)$. The γ-component of the expression above is

$$
\sum_{m=0}^{\min \left(t, \gamma_{n}\right)}(-1)^{m}\binom{t+\gamma_{r}}{t-m}\binom{\gamma_{r}+m}{m} E(\gamma+t \alpha(r, n)) v
$$

If $t>\gamma_{n}$ then $\gamma_{1}+\cdots+\gamma_{n-1}+t>\ell$, so $E(\gamma+t \alpha(r, n)) v=0$ as v belongs to the top ℓ levels. Otherwise,

$$
\sum_{m=0}^{t}(-1)^{m}\binom{t+\gamma_{r}}{t-m}\binom{\gamma_{r}+m}{m}=0
$$

which completes the proof.
4.5. Theorem. Let M be any submodule of $\nabla_{n}(\lambda)$ and let \bar{e} denote the restriction of e to $M^{0} \oplus \cdots \oplus M^{\ell}$. Then \bar{e} is an isomorphism between $M^{0} \oplus \cdots \oplus M^{\ell}$ and $\left(M \otimes S^{\ell}\left(V^{*}\right)\right)^{Y}$ as $G L(n-1)$-modules.

Proof. Lemma 4.2 and Lemma 4.4 imply that \bar{e} is a well-defined injective homomorphism of $G L(n-1)$-modules. To prove that it is surjective, take $v \in\left(M \otimes S^{\ell}\left(V^{*}\right)\right)^{Y}$ of weight $\nu=\left(\nu_{1}, \ldots, \nu_{n}\right)$. By Lemma 4.3, $v=e\left(v_{\ell \varepsilon_{n}}\right)$, so it remains to show that $v_{\ell \varepsilon_{n}}$ lies in the first ℓ levels of M. Suppose for a contradiction this is false, and choose v, ν so that ν is maximal in the dominance order subject to the condition $v_{\ell \varepsilon_{n}} \notin M^{0} \oplus \cdots \oplus M^{\ell}$.

If $v_{\ell \varepsilon_{n}}$ is a $G L(n-1)$-highest weight vector, then by Lemma $4.2, v=e\left(v_{\ell \varepsilon_{n}}\right)$ is a $G L(n-1)$-highest weight vector, which by assumption is Y-invariant. Hence, v is a $G L(n)$ highest weight vector so, using the universality of standard modules, Lemma 4.1 implies that $\nu_{n} \leq \lambda_{n}$. But the weight of $v_{\ell \varepsilon_{n}}$ is $\nu+\ell \varepsilon_{n}$, so this contradicts the assumption $v_{\ell \varepsilon_{n}} \notin$ $M^{0} \oplus \cdots \oplus M^{\ell}$.

So, $v_{\ell_{n}}$ is not a $G L(n-1)$-highest weight vector, so we can find some $1 \leq i<j<n, k>0$ such that $E_{i, j}^{(k)} v_{\ell \varepsilon_{n}} \neq 0$. Applying the injective map e, this implies that $E_{i, j}^{(k)} v \neq 0$. As $E_{i, j}^{(k)} v$ is Y-invariant, the maximality of ν now implies that $E_{i, j}^{(k)} v_{\ell \varepsilon_{n}} \in M^{0} \oplus \cdots \oplus M^{\ell}$. But again this implies that $v_{\ell \varepsilon_{n}} \in M^{0} \oplus \cdots \oplus M^{\ell}$, giving the desired contradiction.
4.6. Corollary. Fix $\lambda, \mu \in X^{+}(n)$ and a submodule $M \leq \nabla_{n}(\lambda)$. The restriction of the map \bar{e} from Theorem 4.5 gives a bijection between the $G L(n-1)$-highest weight vectors in $M^{0} \oplus \cdots \oplus M^{\ell}$ of weight $\mu+\ell \varepsilon_{n}$ and the $G L(n)$-highest weight vectors in $M \otimes S^{\ell}\left(V^{*}\right)$ of weight μ.

Proof. This follows from Theorem 4.5 since a vector $v \in M \otimes S^{\ell}\left(V^{*}\right)$ is $G L(n)$-primitive if and only if it is $G L(n-1)$-primitive and lies in $\left(M \otimes S^{\ell}\left(V^{*}\right)\right)^{Y}$.
4.7. Theorem. Fix $\lambda, \mu \in X^{+}(n)$ and a submodule $M \leq \nabla_{n}(\lambda)$. Let $\bar{\mu}=\left(\mu_{1}, \ldots, \mu_{n-1}\right)$.
(i) If $\mu_{n} \leq \lambda_{n}$ then $\operatorname{Hom}_{G L(n)}\left(\Delta_{n}(\mu), M \otimes S^{\ell}\left(V^{*}\right)\right) \cong \operatorname{Hom}_{G L(n-1)}\left(\Delta_{n-1}(\bar{\mu}), M^{\ell+\mu_{n}-\lambda_{n}}\right)$.
(ii) If $\mu_{n}=\lambda_{n}$ then $\operatorname{Hom}_{G L(n)}\left(L_{n}(\mu), M \otimes S^{\ell}\left(V^{*}\right)\right) \cong \operatorname{Hom}_{G L(n-1)}\left(L_{n-1}(\bar{\mu}), M^{\ell}\right)$.

Proof. (i) A vector $v \in M$ has $G L(n)$-weight $\mu+\ell \varepsilon_{n}$ if and only if it has $G L(n-1)$-weight $\bar{\mu}$ and lies in $M^{\ell+\mu_{n}-\lambda_{n}}$. Since $\mu_{n} \leq \lambda_{n}$, such vectors lie in the first ℓ levels of M. So Corollary 4.6 now implies that there is a bijection between the $G L(n-1)$-highest weight vectors of $(T \cap G L(n-1))$-weight $\bar{\mu}$ in $M^{\ell+\mu_{n}-\lambda_{n}}$ and the $G L(n)$-highest weight vectors in $M \otimes S^{\ell}\left(V^{*}\right)$ of weight μ. The result now follows using the universality of standard modules.
(ii) Suppose now that $\mu_{n}=\lambda_{n}$. In view of (i), it suffices to show that a $G L(n-1)$ highest weight vector $v \in M^{\ell}$ of weight $\mu+\ell \varepsilon_{n}$ generates an irreducible $G L(n-1)$-module if and only if $e(v) \in M_{n}(\lambda) \otimes S^{\ell}\left(V^{*}\right)$ generates an irreducible $G L(n)$-module. Equivalently, applying Theorem 4.5, we need to prove that a $G L(n-1)$-highest weight vector w in $\left(M \otimes S^{\ell}\left(V^{*}\right)\right)^{Y}$ of weight μ generates an irreducible $G L(n-1)$-module if and only if it generates an irreducible $G L(n)$-module. If the $G L(n)$-highest weight vector w generates an irreducible $G L(n)$-module then it certainly generates an irreducible $G L(n-1)$-module by [J, II.2.11].

Conversely, let $w \in M \otimes S^{\ell}\left(V^{*}\right)$ be a $G L(n)$-highest weight vector of weight μ that generates a reducible $G L(n)$-module. Then, we can find an operator Y in the negative part of $\operatorname{Dist}(G L(n))$ generated by all $F_{i, j}^{(k)}$ such that $Y w \in M$ is a non-zero $G L(n)$-highest weight vector of weight $\nu<\mu$. Observe that $\nu_{n} \geq \mu_{n}=\lambda_{n}$, while by Lemma $4.1, \nu_{n} \leq \lambda_{n}$. Thus, $\nu_{n}=\lambda_{n}$, so by weights Y lies in $\operatorname{Dist}(G L(n-1))$. But this implies that the $G L(n-1)$-module generated by w is also reducible as required.

We remark that Theorem 4.7 (i) can also be deduced from [BK1, Corollary 2.10]. Part (ii) is certainly false if we try to weaken the assumption to $\mu_{n} \leq \lambda_{n}$. Theorem C follows from Theorem 4.7(ii):
4.8. Corollary. Fix $\lambda, \mu \in X^{+}(n)$ with $\lambda_{n}=\mu_{n}$. Let $\ell=\sum_{i=1}^{n}\left(\lambda_{i}-\mu_{i}\right)$ and $\bar{\mu}=$ $\left(\mu_{1}, \ldots, \mu_{n-1}\right)$. For any submodule M of $\nabla_{n}(\lambda)$,

$$
\operatorname{Hom}_{G L(n)}\left(L_{n}(\mu), M \otimes S^{\ell}\left(V^{*}\right)\right) \cong \operatorname{Hom}_{G L(n-1)}\left(L_{n-1}(\bar{\mu}), M \downarrow_{G L(n-1)}\right)
$$

Proof. This follows immediately from Theorem 4.7(ii) since the j th level M^{j} is the sum of all weight spaces M_{ν} with $\nu \in X^{+}(n)$ satisfying $\nu_{1}+\cdots+\nu_{n-1}=\lambda_{1}+\cdots+\lambda_{n-1}-j$.

Finally, we deduce Theorem D. For any $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in X^{+}(n)$, we write λ^{*} for the dominant weight $-w_{0} \lambda=\left(-\lambda_{n},-\lambda_{n-1}, \ldots,-\lambda_{1}\right) \in X^{+}(n)$.
4.9. Theorem. Fix any $\lambda \in X^{+}(n)$ and $\mu \in X^{+}(n-1)$ with $\lambda_{i+1} \leq \mu_{i} \leq \lambda_{i}$ for $i=$ $1, \ldots, n-1$. Let $\tilde{\mu}=\left(\mu_{1}, \ldots, \mu_{n-1}, \lambda_{n}\right) \in X^{+}(n)$ and $\bar{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n-1}\right) \in X^{+}(n-1)$. Then,

$$
\operatorname{Hom}_{G L(n-1)}\left(L_{n-1}(\mu), \nabla_{n}(\lambda) \downarrow_{G L(n-1)}\right) \cong \operatorname{Hom}_{G L(n-1)}\left(\Delta_{n-1}\left(\overline{\lambda^{*}}\right), L_{n}\left(\tilde{\mu}^{*}\right) \downarrow G L(n-1)\right)
$$

Proof. We note that $\overline{\lambda^{*}}=\left(-\lambda_{n}, \ldots,-\lambda_{2}\right)$ and $\tilde{\mu}^{*}=\left(-\lambda_{n},-\mu_{n-1}, \ldots,-\mu_{1}\right)$. Let $\gamma=$ $\tilde{\mu}, \bar{\gamma}=\mu$ and $\ell=\sum_{i=1}^{n}\left(\lambda_{i}-\gamma_{i}\right)$. Arguing as in Corollary 4.8, it suffices to prove that

$$
\operatorname{Hom}_{G L(n-1)}\left(L_{n-1}(\bar{\gamma}), \nabla_{n}(\lambda)^{\ell}\right) \cong \operatorname{Hom}_{G L(n-1)}\left(\Delta_{n-1}\left(\overline{\lambda^{*}}\right), L_{n}\left(\gamma^{*}\right)^{\ell+\mu_{1}-\lambda_{1}}\right)
$$

Using Theorem 4.7 and the fact that $\mu_{1} \leq \lambda_{1}$, we have that

$$
\begin{aligned}
\operatorname{Hom}_{G L(n-1)}\left(L_{n-1}(\bar{\gamma}), \nabla_{n}(\lambda)^{\ell}\right) & \cong \operatorname{Hom}_{G L(n)}\left(L_{n}(\gamma), \nabla_{n}(\lambda) \otimes S^{\ell}\left(V^{*}\right)\right) \\
& \cong \operatorname{Hom}_{G L(n)}\left(\Delta_{n}\left(\lambda^{*}\right), L_{n}\left(\gamma^{*}\right) \otimes S^{\ell}\left(V^{*}\right)\right) \\
& \cong \operatorname{Hom}_{G L(n-1)}\left(\Delta_{n-1}\left(\overline{\lambda^{*}}\right), L_{n}\left(\gamma^{*}\right)^{\ell+\mu_{1}-\lambda_{1}}\right)
\end{aligned}
$$

as claimed.

References

[B1] J. Brundan, Modular branching rules and the Mullineux map for Hecke algebras of type A, Proc. London Math. Soc. 77 (1998), 551-581.
[B2] J. Brundan, Lowering operators for $G L(n)$ and quantum $G L(n)$, Proc. Symposia in Pure Math. 63 (1998), 95-114.
[BK1] J. Brundan and A. Kleshchev, Modular Littlewood-Richardson coefficients, to appear in Math. Z.
[BK2] J. Brundan and A. Kleshchev, On translation functors for general linear and symmetric groups, to appear in Proc. London Math. Soc..
[BKS] J. Brundan, A. Kleshchev and I. Suprunenko, Semisimple restrictions from $G L(n)$ to $G L(n-$ 1), J. reine angew. Math. 500 (1998), 83-112.
[H1] J. E. Humphreys, Modular representations of classical Lie algebras and semisimple groups, J. Algebra 19 (1971), 51-79.
[H2] J. E. Humphreys, Introduction to Lie algebras and representation theory, sixth edition, Springer-Verlag, 1996.
[J] J. C. Jantzen, Representations of algebraic groups, Academic Press, Orlando, 1987.
[K1] A. Kleshchev. On restrictions of irreducible modular representations of semisimple algebraic groups and symmetric groups to some natural subgroups I, Proc. London Math. Soc. 69 (1994), 515-540.
[K2] A. Kleshchev, On restrictions of irreducible modular representations of semisimple algebraic groups and symmetric groups to some natural subgroups, II, Comm. Alg. 22 (1994), 61756208.
[K3] A. Kleshchev, Branching rules for modular representations of symmetric groups I, J. Algebra 178 (1995), 493-511.
[K4] A. Kleshchev, Branching rules for modular representations of symmetric groups II, J. reine angew. Math. 459 (1995), 163-212.
[PRV] K. R. Parthasarathy, R. Ranga Rao and V. S. Varadarajan, Representations of complex semi-simple Lie groups and Lie algebras, Ann. Math. (2) 85 (1967), 383-429.
[S] R. Steinberg, Lectures on Chevalley Groups, Yale University, 1967.
[W] Wang J-P., Sheaf cohomology on G / B and tensor products of Weyl modules, J. Algebra 77 (1982), 162-185.
brundan@darkwing.uoregon.edu, klesh@math.uoregon.edu
Department of Mathematics, University of Oregon, Eugene, Oregon, U.S.A.

[^0]: *1991 subject classification: 20G05.
 ${ }^{\dagger}$ Both authors partially supported by the NSF.

