
TYPE A BLOCKS OF SUPER CATEGORY O

JONATHAN BRUNDAN AND NICHOLAS DAVIDSON

Abstract. We show that every block of category O for the general linear Lie su-

peralgebra glm|n(k) is equivalent to some corresponding block of category O for the

queer Lie superalgebra qm+n(k). This implies the truth of the Kazhdan-Lusztig con-
jecture for the so-called type A blocks of category O for the queer Lie superalgebra

as formulated by Cheng, Kwon and Wang.

1. Introduction

In this article, we study the analog of the BGG category O for the Lie superalgebra
qn(k). Recent work of Chen [C] has reduced most questions about this category just
to the study of three particular types of block, which we refer to here as the type A,
type B and type C blocks. Type B blocks (which correspond to integral weights) were
investigated already by the first author in [B2], leading to a Kazhdan-Lusztig conjecture
for characters of irreducibles in such blocks in terms of certain canonical bases for the
quantum group of type B∞. In [CKW], Cheng, Kwon and Wang formulated analogous
conjectures for the type A blocks (defined below) and the type C blocks (which corre-
spond to half-integral weights) in terms of canonical bases of quantum groups of types
A∞ and C∞, respectively.

The main goal of the article is to prove the Cheng-Kwon-Wang conjecture for type A
blocks ([CKW, Conjecture 5.14]). To do this, we use some tools from higher representa-
tion theory to establish an equivalence of categories between the type A blocks of category
O for the Lie superalgebra qn(k) and integral blocks of category O for a general linear
Lie superalgebra. This reduces the Cheng-Kwon-Wang conjecture for type A blocks to
the Kazhdan-Lusztig conjecture of [B1], which was proved already in [CLW, BLW].

Regarding the types B and C conjectures, Tsuchioka discovered in 2010 that the type
B canonical bases considered in [B2] fail to satisfy appropriate positivity properties, so
that the conjecture from [B2] is certainly false. Moreover, after the first version of [CKW]
appeared, Tsuchioka pointed out similar issues with the type C canonical bases studied in
[CKW], so that the Cheng-Kwon-Wang conjecture for type C blocks as formulated in the
first version of their article ([CKW, Conjecture 5.10]) also seems likely to be incorrect.

In fact, the techniques developed in this article can be applied also to the study of
the type C blocks. This will be spelled out in a sequel to this paper. In this sequel,
we prove a modified version of the Cheng-Kwon-Wang conjecture for type C blocks:
one needs to replace Lusztig’s canonical basis with Webster’s “orthodox basis” arising
from the indecomposable projective modules of the tensor product algebras of [W, §4].
This modified conjecture was proposed independently by Cheng, Kwon and Wang in
a revision of their article ([CKW, Conjecture 5.12]). It is not as satisfactory as the
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situation for type A blocks, since there is no elementary algorithm to compute Webster’s
basis explicitly (unlike the canonical basis). Also in the sequel, we will prove [CKW,
Conjecture 5.13], and settle [CKW, Question 5.1] by identifying the category of finite-
dimensional half-integer weight representations of qn(k) with a previously known highest
weight category (as suggested by [CK, Remark 6.7]).

There is more to be said about type B blocks too; in fact, these are the most intriguing
of all. Whereas the types A and C blocks carry the additional structure of tensor product
categorifications in the sense of [LW, BLW] for the infinite rank Kac-Moody algebras of
types A∞ and C∞, respectively, the type B blocks produce an example of a tensor
product categorification of odd type B∞, i.e. one needs a super Kac-Moody 2-category
in the sense of [BE2]. This will be developed in subsequent work by the second author.

In the remainder of the introduction, we are going to formulate our main result for
type A blocks in more detail. To do this, we first briefly recall some basic notions of
superalgebra. Let k be a ground field which is algebraically closed of characteristic zero,
and fix a choice of

√
−1 ∈ k. We adopt the language of [BE1, Definition 1.1]:

• A supercategory is a category enriched in the symmetric monoidal category of
vector superspaces, i.e. the category of Z /2-graded vector spaces over k with
morphisms that are parity-preserving linear maps.
• Any morphism in a supercategory decomposes uniquely into an even and an

odd morphism as f = f0̄ + f1̄. A superfunctor between supercategories means a
k-linear functor which preserves the parities of morphisms.
• For superfunctors F,G : C → D, a supernatural transformation η : F ⇒ G is a

family of morphisms ηM = ηM,0̄ + ηM,1̄ : FM → GM for each M ∈ ob C, such

that ηN,p◦Ff = (−1)|f |pGf ◦ηM,p for every homogeneous morphism f : M → N
in C and each p ∈ Z /2.

For any supercategory C, the Clifford twist CCT is the supercategory whose objects are
pairs (X,φ) for X ∈ ob C and φ ∈ EndC(X)1̄ with φ2 = id, and whose morphisms
f : (X,φ) → (X ′, φ′) are morphisms f : X → X ′ in C such that fp ◦ φ = (−1)pφ′ ◦ fp
for each p ∈ Z /2. One can also take Clifford twists of superfunctors and supernatural
transformations (details omitted), so that CT is actually a 2-superfunctor from the 2-
supercategory of supercategories to itself in the sense of [BE1, Definition 2.2]. The
following basic lemma is a variation on [KKT, Lemma 2.3].

Lemma. Suppose C is a supercategory such that

• C is additive;
• C is Π-complete, i.e. every object of C is the target of an odd isomorphism;
• all even idempotents split.

Then the supercategories C and (CCT)CT are superequivalent.

For example, suppose that A is a locally unital superalgebra, i.e. an associative
superalgebra A = A0̄ ⊕ A1̄ equipped with a distinguished collection {1x | x ∈ X} of
mutually orthogonal even idempotents such that A =

⊕
x,y∈X 1yA1x. Then there is a

supercategory A -smod consisting of finite-dimensional left A-supermodules M which are
locally unital in the sense that M =

⊕
x∈X 1xM . Even morphisms in A -smod are parity-

preserving linear maps such that f(av) = af(v) for all a ∈ A, v ∈M ; odd morphisms are
parity-reversing linear maps such that f(av) = (−1)|a|af(v) for homogeneous a. There is
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an obvious isomorphism between the Clifford twist A -smodCT of this supercategory and
the supercategory A ⊗ C1 -smod, where C1 denotes the rank one Clifford superalgebra
generated by an odd involution c, and A ⊗ C1 is the usual braided tensor product of
superalgebras. Hence, (A -smodCT)CT is isomorphic to A⊗C2 -smod where C2 := C1⊗C1

is the rank two Clifford superalgebra generated by c1 := c ⊗ 1 and c2 := 1 ⊗ c. In this
situation, the above lemma is obvious as A⊗C2 is isomorphic to the matrix superalgebra
M1|1(A), which is Morita superequivalent to A.

Now fix n ≥ 1 and let g = g0̄ ⊕ g1̄ be the Lie superalgebra qn(k). Recall this is the
subalgebra of the general linear Lie superalgebra gln|n(k) consisting of all matrices of
block form (

A B
B A

)
. (1.1)

Let b (resp. h) be the standard Borel (resp. Cartan) subalgebra of g consisting of all
matrices (1.1) in which A and B are upper triangular (resp. diagonal). Let t := h0̄.
We let δ1, . . . , δn be the basis for t∗ such that δi picks out the ith diagonal entry of the
matrix A. Fix also a sign sequence σ = (σ1, . . . , σn) with each σr ∈ {±}, and a scalar
z ∈ k such that 2z /∈ Z. We stress that all of our subsequent notation depends
implicitly on these choices.

It will be convenient to index certain weights in t∗ by the set B := Zn via the following
weight dictionary: for b = (b1, . . . , bn) ∈ B let

λb :=

n∑
r=1

λb,rδr where λb,r := σr(z + br). (1.2)

We let sO be the category of all g-supermodules M satisfying the following properties:

• M is finitely generated as a g-supermodule;
• M is locally finite-dimensional over b;
• M is semisimple over t with all weights of the form λb for b ∈ B.

Morphisms in sO are arbitrary (not necessarily even) g-supermodule homomorphisms,
so that it is a supercategory. It also admits a parity switching functor Π. The type A
blocks mentioned earlier are the blocks of sO for all possible choices of σ and z.

For each b ∈ B, there is an irreducible supermodule L(b) ∈ ob sO of highest weight λb.
Note the highest weight space of L(b) is not one-dimensional: it is some sort of irreducible
Clifford supermodule over the Cartan subalgebra h. Every irreducible supermodule in
sO is isomorphic to L(b) for a unique b ∈ B via a homogeneous (but not necessarily
even) isomorphism. If n is odd, L(b) is of type Q, i.e., L(b) is evenly isomorphic to its
parity flip ΠL(b). When n is even, the irreducible L(b) is of type M, and we should
explain how to distinguish it from its parity flip. For each i ∈ Z, we fix a choice

√
z + i

of a square root of z + i, then set
√
−(z + i) := (−1)i

√
−1
√
z + i. The key point about

this is that √
−(z + i)

√
−(z + i+ 1) =

√
z + i

√
z + i+ 1 (1.3)

for each i ∈ Z. Let d′r ∈ g1̄ be the matrix of the form (1.1) such that A = 0 and B is
the rth diagonal matrix unit. Then, for even n, we assume that L(b) is chosen so that
d′1 · · · d′n acts on any even highest weight vector by the scalar (

√
−1)n/2

√
λb,1 · · ·

√
λb,n.

This determines L(b) uniquely up to even isomorphism.
Turning our attention to the category on the other side of our main equivalence,

let g′ be the general linear Lie superalgebra consisting of n × n matrices under the
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supercommutator, with Z /2-grading defined by declaring that the rs-matrix unit is even
if σr = σs and odd if σr 6= σs. Let b′ (resp. t′) be the standard Borel (resp. Cartan)
subalgebra consisting of upper triangular (resp. diagonal) matrices in g′. As before,
we let δ′1, . . . , δ

′
n be the basis for (t′)∗ defined by the diagonal coordinate functions. We

introduce another weight dictionary (which in this setting is some “signed ρ-shift”): for
b ∈ B, let

λ′b :=

n∑
r=1

λ′b,rδ
′
r where λ′b,r := σr

(
br + σ11 + · · ·+ σr−11 + 1

2 (σr1− 1)
)
. (1.4)

Let sO′ be the supercategory of g′-supermodules M ′ such that

• M ′ is finitely generated as a g′-supermodule;
• M ′ is locally finite-dimensional over b′;
• M ′ is semisimple over t′ with all weights of the form λ′b for b ∈ B.

Note sO′ is the sum of all of the blocks of the usual category O for g′ corresponding
to integral weights of t′. For each b ∈ B, there is a unique (up to even isomorphism)
irreducible supermodule L′(b) ∈ ob sO′ generated by a homogeneous highest weight
vector of weight λ′b and parity

∑
σr=− λ

′
b,r (mod 2).

Main Theorem. If n is even then there is a superequivalence E : sO → sO′ such
that EL(b) is evenly isomorphic to L′(b) for each b ∈ B. If n is odd then there is a
superequivalence E : sO → (sO′)CT such that EL(b) is evenly isomorphic to (L′(b) ⊕
ΠL′(b), φ) for either of the two choices of odd involution φ.

If C is any k-linear category, we let C ⊕ ΠC be the supercategory whose objects are
formal direct sums V1 ⊕ΠV2 for V1, V2 ∈ ob C, with morphisms V1 ⊕ΠV2 → W1 ⊕ΠW2

being matrices of the form f =

(
f11 f12

f21 f22

)
for fij ∈ HomC(Vj ,Wi). The Z /2-grading

is defined so that f0̄ =

(
f11 0
0 f22

)
and f1̄ =

(
0 f12

f21 0

)
. For example, if C is

the category A -mod of finite-dimensional locally unital modules over some locally unital
algebra A, then C ⊕ ΠC may be identified with the category A -smod, viewing A as a
purely even superalgebra.

It was noticed originally in [B1] that the category sO′ can be decomposed in this way:
let O′ be full subcategory of sO′ consisting of all g′-supermodules whose λ′b-weight space
is concentrated in parity

∑
σr=− λ

′
b,r (mod 2) for each b ∈ B; obviously, there are no

non-zero odd morphisms between objects ofO′. Then sO′ decomposes as sO′ = O′⊕ΠO′.
Moreover, O′ is a highest weight category with irreducible objects {L′(b)|b ∈ B} indexed
by the set B as above. In fact, O′ equivalent to A -mod for a locally unital algebra A such
that the left ideals A1x and right ideals 1xA are finite-dimensional for all distinguished
idempotents 1x ∈ A. Although not needed here, the results of [BLW] imply further that
the algebra A may be equipped with a Z-grading making it into a (locally unital) Koszul
algebra; this leads to the definition of a graded analog of the category O′ similar in spirit
to Soergel’s graded lift of classical category O as in e.g. [BGS].

Combining these remarks with our Main Theorem, we deduce:

• For even n, the category sO decomposes as sO = O⊕ΠO, where O is the Serre
subcategory generated by the irreducible supermodules {L(b)|b ∈ B} introduced
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above (but not their parity flips). Moreover, O is equivalent to O′, hence, to the
category A -mod where A is the Koszul algebra just introduced.
• For odd n, sO is superequivalent to A ⊗ C1 -smod, viewing A as a purely even

superalgebra. This implies that the underlying category sO consisting of the
same objects as sO but only its even morphisms is equivalent to A -mod, hence,
to O′.

As already mentioned, the Kazhdan-Lusztig conjecture for sO formulated in [CKW]
follows immediately from this discussion together with the Kazhdan-Lusztig conjecture
for O′ proved in [CLW, BLW].

There is also a parabolic analog of our Main Theorem. Let ν = (ν1, . . . , νl) be a
composition of n with σr = σs for all ν1 + · · · + νk−1 + 1 ≤ r < s ≤ ν1 + · · · + νk
and k = 1, . . . , l. Let pν be the corresponding standard parabolic subalgebra of g,
i.e. the matrices A and B in (1.1) are block upper triangular with diagonal blocks
of shape ν. Let sOν be the corresponding parabolic analog of the category sO, i.e.
it is the full subcategory of sO consisting of all supermodules that are locally finite-
dimensional over pν . Similarly, there is a standard parabolic subalgebra p′ν of g′ consisting
of block upper triangular matrices of shape ν, and we let sO′ν be the analogously defined
parabolic subcategory of sO′. Various special cases of the following corollary for maximal
parabolics/two-part compositions ν were known before; see [C, §4] and [CC].

Corollary. If n is even then sOν is superequivalent to sO′ν . If n is odd then sOν is
superequivalent to (sO′ν)CT.

Proof. This follows from our Main Theorem on observing that sOν and sO′ν may be
defined equivalently as the Serre subcategories of sO and sO′ generated by the irreducible
supermodules {L(b),ΠL(b)} and {L′(b),ΠL′(b)}, respectively, for b ∈ B such that the
following hold for r /∈ {ν1, ν1 + ν2, . . . , ν1 + · · ·+ νl}:

• if σr = + then br > br+1;
• if σr = − then br < br+1.

(This assertion is a well-known consequence of the construction of parabolic Verma su-
permodules in sO and sO′, respectively; see e.g. [M].) �

In order to prove the Main Theorem, we will exploit the following powerful theo-
rem established in [BLW]: the category O′ defined above is the unique (up to strongly
equivariant equivalence) sl∞-tensor product categorification of the module

V ⊗σ := V σ1 ⊗ · · · ⊗ V σn ,

where V + denotes the natural sl∞-module and V − denotes its dual. Hence, for even n, it
suffices to show that the category sO decomposes as O⊕ΠO for some sl∞-tensor product
categorification O of V ⊗σ. For odd n, we show instead that sOCT decomposes as O⊕ΠO
for some sl∞-tensor product categorification O of V ⊗σ, hence, sOCT is superequivalent
to sO′. The Main Theorem then follows on taking Clifford twists, using also the lemma
formulated above. In both the even and odd cases, our argument relies crucially also on
an application of the main result of [KKT].

Acknowledgements. We thank the authors of [CKW] for several helpful discussions at the
KIAS conference “Categorical Representation Theory and Combinatorics” in December
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2015, and Shunsuke Tsuchioka for sharing his computer-generated counterexamples to
the type B and C conjectures.

2. Verma supermodules

We continue with n ≥ 1, σ = (σ1, . . . , σn) ∈ {±1}n, and z ∈ k with 2z /∈ Z. Let
m := dn/2e, so that n = 2m or 2m− 1. Also set

I := Z, J :=
{
±
√
z + i

√
z + i+ 1

∣∣∣ i ∈ I} , (2.1)

where the square roots are as chosen in the introduction.
In this paragraph, we work with the Lie superalgebra ĝ := gl2m|2m(k) in order to

introduce some coordinates. Let Û be the natural ĝ-supermodule with standard basis
u1, . . . , u4m. Write xr,s for the rs-matrix unit in ĝ, so xr,sut = δs,tur. We denote the
odd basis vectors u2m+1, . . . , u4m instead by u′1, . . . , u

′
2m. For 1 ≤ r, s ≤ 2m, we set

er,s := xr,s + x2m+r,2m+s, e′r,s := xr,2m+s + x2m+r,s, (2.2)

fr,s := xr,s − x2m+r,2m+s, f ′r,s := xr,2m+s − x2m+r,s. (2.3)

Also let

dr := er,r, d′r := e′r,r. (2.4)

Then we have that

er,sut = δs,tur, er,su
′
t = δs,tu

′
r, e′r,sut = δs,tu

′
r, e′r,su

′
t = δs,tur, (2.5)

fr,sut = δs,tur, fr,su
′
t = −δs,tu′r, f ′r,sut = −δs,tu′r, f ′r,su

′
t = δs,tur. (2.6)

Finally let Û∗ be the dual supermodule to Û , with basis φ1, . . . , φ2m, φ
′
1, . . . , φ

′
2m that is

dual to the basis u1, . . . , u2m, u
′
1, . . . , u

′
2m. We have that

er,sφt = −δr,tφs, er,sφ
′
t = −δr,tφ′s, e′r,sφt = −δr,tφ′s, e′r,sφ

′
t = δr,tφs, (2.7)

fr,sφt = −δr,tφs, fr,sφ
′
t = δr,tφ

′
s, f ′r,sφt = −δr,tφ′s, f ′r,sφ

′
t = −δr,tφs. (2.8)

When n is even, we continue with g, b and h as in the introduction, so g is the
subalgebra of ĝ spanned by {er,s, e′r,s|1 ≤ r, s ≤ n}, while h has basis {dr, d′r|1 ≤ r ≤ 2m}.
However, when n is odd, it is convenient to change some of this notation. The point
of doing this is to unify our treatment of even and odd n as much as possible in the
remainder of the article. So, if n is odd, we henceforth redefine g, b and h as follows:

• g denotes the Lie superalgebra qn(k)⊕ q1(k), which we identify with the subal-
gebra of ĝ spanned by {er,s, e′r,s | 1 ≤ r, s ≤ n} t {d2m, d

′
2m}.

• b is the Borel subalgebra spanned by {er,s, e′r,s | 1 ≤ r ≤ s ≤ n} t {d2m, d
′
2m};

• h is the Cartan subalgebra spanned by {dr, d′r | 1 ≤ r ≤ 2m}.
In both the even and the odd cases, the subspaces U ⊆ Û and U∗ ⊆ Û∗ spanned
by u1, . . . , un, u

′
1, . . . , u

′
n and φ1, . . . , φn, φ

′
1, . . . , φ

′
n, respectively, may be viewed as g-

supermodules. Also set t := h0̄ and let δ1, . . . , δ2m be the basis for t∗ that is dual to the
basis d1, . . . , d2m for t.

For b ∈ B, we define λb according to (1.2) if n is even, but redefine it in the odd case
as

λb :=

n∑
r=1

λb,rδr + δ2m where λb,r := σr(z + br). (2.9)
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We also introduce the tuple dr ∈ B which has 1 as its rth entry and 0 in all other places,
so that

λb ± δr = λb±σrdr . (2.10)

Then we define sO exactly as we did in the introduction but using the current choices
for g, b, t and λb. This is exactly the same category as in the introduction when n is
even, but when n is odd our new version of sO is superequivalent to the Clifford twist
sOCT of the supercategory from the introduction. Indeed, if M is a supermodule in our
new sO, the restriction of M to the subalgebra qn(k), equipped with the odd involution
defined by the action of d′2m, gives an object of the Clifford twist of the supercategory
from before.

We proceed to define some irreducible h-supermodules {V (b) | b ∈ B}. Let C2 be the
rank 2 Clifford superalgebra with odd generators c1, c2 subject to the relations c21 = c22 =
1, c1c2 = −c2c1. Let V be the irreducible C2-supermodule on basis v, v′ with v even and
v′ odd, and action defined by

c1v = v′, c1v
′ = v, c2v =

√
−1v′, c2v

′ = −
√
−1v.

Then, for b ∈ B, we set V (b) := V ⊗m. For 1 ≤ r ≤ n, we let dr act by the scalar λb,r and

d′r act by left multiplication by
√
λb,r id⊗(s−1)⊗cr+1−2s⊗ id(m−s) where s := br/2c (and

we are using the usual superalgebra sign rules). In the odd case, we also need to define

the actions of d2m and d′2m: these are the identity and the odd involution id⊗(m−1)⊗c2,
respectively. In all cases, V (b) is an irreducible h-supermodule of type M, and its t-weight
is λb. Moreover, by construction, d′1 · · · d′2m acts on any even (resp. odd) vector in V (b)
as cb (resp. −cb), where

cb := (
√
−1)m

√
λb,1 · · ·

√
λb,n. (2.11)

The signs here distinguish V (b) from its parity flip.

Lemma 2.1. For b ∈ B, any h-supermodule that is semisimple of weight λb over t
decomposes as a direct sum of copies of the supermodules V (b) and ΠV (b).

Proof. We can identify h-supermodules that are semisimple of weight λb over t with
supermodules over the Clifford superalgebra C2m := C⊗m2 , so that d′r (r = 1, . . . , n) acts

in the same way as
√
λb,r id⊗(s−1)⊗cr+1−2s⊗ id(m−s) where s := br/2c, and in the odd

case d′2m acts as id⊗(m−1)⊗c2. The lemma then follows since C2m is simple, indeed, it
is isomorphic to the matrix superalgebra M2n−1|2n−1(k). �

Let sO denote the underlying category consisting of the same objects as sO but only
the even morphisms. This is obviously an Abelian category. In order to parametrize its
irreducible objects explicitly, we introduce the Verma supermodule M(b) for b ∈ B by
setting

M(b) := U(g)⊗U(b) V (b), (2.12)

where we are viewing V (b) as a b-supermodule by inflating along the surjection b� h.
The weight λb is the highest weight of M(b) in the usual dominance order on t∗, i.e.

λ ≤ µ if and only if µ−λ ∈
⊕n−1

r=1 N(δr − δr+1). Note also that we can distinguish M(b)
from its parity flip in the same way as for V (b): the element d′1 · · · d′2m acts on any even
(resp. odd) vector in the highest weight space M(b)λb

as the scalar cb (resp. −cb).
As usual, the Verma supermodule M(b) has a unique irreducible quotient denoted

L(b). Thus, L(b) is an irreducible g-supermodule of highest weight λb, and the action
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of d′1 · · · d′2m on its highest weight space distinguishes it from its parity flip. The irre-
ducible supermodules {L(b),ΠL(b) | b ∈ B} give a complete set of pairwise inequivalent
irreducible supermodules in sO. The endomorphism algebras of these objects are all
one-dimensional, so they are irreducibles of type M. Moreover, by a standard argument
involving restricting to the underlying even Lie algebra as in [B3, Lemma 7.3], we get
that sO is a Schurian category in the following sense (cf. [BLW, §2.1]):

Definition 2.2. A Schurian category is a k-linear Abelian category in which all objects
have finite length, there are enough projectives and injectives, and the endomorphism
algebras of irreducible objects are all one-dimensional.

Let xT denote the usual transpose of a matrix x ∈ ĝ. This induces an antiautomor-
phism of g, i.e. we have that [x, y]T = [yT , xT ]. Given M ∈ ob sO, we can view the
direct sum

⊕
b∈BM

∗
λb

of the linear duals of the weight spaces of M as a g-supermodule

with action defined by (xf)(v) := f(xT v). Let M? be the object of sO obtained from
this by applying also the parity switching functor Πm. Making the obvious definition
on morphisms, this gives us a contravariant superequivalence ? : sO → sO. We have
incorporated the parity flip into this definition in order to get the following lemma.

Lemma 2.3. For b ∈ B, we have that L(b)? ∼= L(b) via an even isomorphism.

Proof. By weight considerations, we either have that L(b)? is evenly isomorphic to L(b)
or to ΠL(b). To show that the former holds, take an even highest weight vector f ∈ L(b)?.
We must show that d′1 · · · d′2mf = cbf (rather than −cbf). Remembering the twist by
Πm in our definition of ?, there is a highest weight vector v ∈ L(b) of parity m (mod 2)
such that f(v) = 1. Then we get that

(d′1 · · · d′2mf)(v) = f(d′2m · · · d′1v) = (−1)mf(d′1 · · · d′2mv) = cbf(v).

Hence, d′1 · · · d′2mf = cbf . �

Let P (b) be a projective cover of L(b) in sO. There are even epimorphisms P (b) �
M(b) � L(b). Applying ?, we deduce that there are even monomorphisms L(b) ↪→
M(b)? ↪→ P (b)?. The supermodule P (b)? is an injective hull of L(b), while M(b)? is
the dual Verma supermodule. The following lemma is well known; it follows from central
character considerations (e.g. see [CW, Theorem 2.48]) plus the universal property of
Verma supermodules.

Lemma 2.4. Suppose that λb is dominant and typical, by which we mean that the
following hold for all 1 ≤ r < s ≤ n:

• if σr = σs then λb,r ≥ λb,s;
• if σr 6= σs then λb,r + λb,s 6= 0.

Then M(b) = P (b).

Let sO∆ be the full subcategory of sO consisting of all supermodules possessing a
Verma flag, i.e. for which there is a filtration 0 = M0 ⊂ · · · ⊂ Ml = M with sections
Mk/Mk−1 that are evenly isomorphic to M(b)’s or ΠM(b)’s for b ∈ B. Since the classes
of all M(b) and ΠM(b) are linearly independent in the Grothendieck group of sO, the
multiplicities (M : M(b)) and (M : ΠM(b)) of M(b) and ΠM(b) in a Verma flag of M
are independent of the particular choice of flag. The following lemma is quite standard.
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Lemma 2.5. For M ∈ ob sO∆ and b ∈ B, we have that

(M : M(b)) = dim HomsO(M,M(b)?)0̄,

(M : ΠM(b)) = dim HomsO(M,M(b)?)1̄.

Also, any direct summand of M ∈ ob sO∆ possesses a Verma flag.

Proof. The first part of the lemma follows by induction on the length of the Verma flag,
using the following two observations: for all a, b ∈ B we have that

• HomsO(M(a),M(b)?) is zero if a 6= b, and it is one-dimensional of even parity
if a = b;
• Ext1

sO(M(a),M(b)?) = 0.

To check these, for the first one, we use the universal property of M(a) to see that
HomsO(M(a),M(b)?) is zero unless λa ≤ λb. Similarly, on applying ?, it is zero un-
less λb ≤ λa. Hence, we may assume that a = b. Finally, any non-zero homomor-
phism M(a) → M(a)? must send the head to the socle, so HomsO(M(a),M(a)?) is
evenly isomorphic to HomsO(L(a), L(a)?), which is one-dimensional and even thanks to
Lemma 2.3. For the second property, we must show that all short exact sequences in sO
of the form

0→M(a)? →M →M(b)→ 0 or 0→ ΠM(a)? →M →M(b)→ 0

split. Either λa or λb is a maximal weight of M . In the latter case, using also Lemma 2.1,
we can use the universal property of M(b) to construct a splitting of M �M(b). In the
former case, we apply ?, the resulting short exact sequence splits as before, and then we
dualize again.

The final statement of the lemma may be proved by mimicking the argument for
semisimple Lie algebras from [H, §3.2]. �

3. Special projective superfunctors

Next, we investigate the superfunctors U ⊗− and U∗ ⊗− defined by tensoring with
the g-supermodules U and U∗ introduced in the previous section. They clearly preserve
the properties of being finitely generated over g, locally finite-dimensional over b, and
semisimple over t. Since the t-weights of U and U∗ are δ1, . . . , δn and −δ1, . . . ,−δn,
respectively, and using (2.10), we get for each M ∈ ob sO that all weights of U ⊗M and
U∗ ⊗M are of the form λb for b ∈ B. Hence, these superfunctors send objects of sO to
objects of sO, i.e. we have defined

sF := U ⊗− : sO → sO, sE := U∗ ⊗− : sO → sO. (3.1)

Let

ω :=

n∑
r,s=1

(
fr,s ⊗ es,r − f ′r,s ⊗ e′s,r

)
∈ U(ĝ)⊗ U(g). (3.2)

Left multiplication by ω (resp. by −ω) defines a linear map xM : U ⊗M → U ⊗M (resp.
x∗M : U∗ ⊗M → U∗ ⊗M) for each g-supermodule M . In view of the next lemma, these
maps define a pair of even supernatural transformations

x : sF ⇒ sF, x∗ : sE ⇒ sE. (3.3)

Lemma 3.1. The linear maps xM and x∗M just defined are even g-supermodule homo-
morphisms.
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Proof. This is straightforward to verify directly, but we give a more conceptual argument
which better explains the origin of these maps. The odd element

f ′ :=

n∑
t=1

f ′t,t ∈ U(ĝ) (3.4)

supercommutes with the elements of U(g). Hence, f ′⊗ 1 ∈ U(ĝ)⊗U(g) supercommutes
with the image of the comultiplication ∆ : U(g)→ U(g)⊗U(g) ⊂ U(ĝ)⊗U(g). The odd
Casimir tensor

Ω′ :=

n∑
r,s=1

(
er,s ⊗ e′s,r − e′r,s ⊗ es,r

)
∈ U(g)⊗ U(g)

also supercommutes with the image of ∆. Hence, the even tensor

Ω := Ω′(f ′ ⊗ 1) = −
n∑

r,s,t=1

(
er,sf

′
t,t ⊗ e′s,r + e′r,sf

′
t,t ⊗ es,r

)
∈ U(ĝ)⊗ U(g)

commutes with the image of ∆. Consequently, left multiplication by Ω defines even g-
supermodule endomorphisms xM : U ⊗M → U ⊗M and x∗M : U∗ ⊗M → U∗ ⊗M . It
remains to observe that these endomorphisms agree with the linear maps defined by left
multiplication by ω and −ω, respectively. Indeed, by a calculation using (2.5)–(2.8), the
elements er,sf

′
t,t and e′r,sf

′
t,t of U(ĝ) act on vectors in U (resp. U∗) in the same way as

δs,tf
′
r,s and −δs,tfr,s (resp. −δr,tf ′r,s and δr,tfr,s), respectively. �

Lemma 3.2. Suppose that b ∈ B and let M := M(b).

(1) There is a filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Mn = U ⊗M

with Mt/Mt−1
∼= M(b + σtdt) ⊕ ΠM(b + σtdt) for each t = 1, . . . , n. The

endomorphism xM preserves this filtration, and the induced endomorphism of
Mt/Mt−1 is diagonalizable with exactly two eigenvalues ±

√
λb,t
√
λb,t + 1. Its√

λb,t
√
λb,t + 1-eigenspace is evenly isomorphic to M(b+σtdt), while the other

eigenspace is evenly isomorphic to ΠM(b+ σtdt).
(2) There is a filtration

0 = Mn ⊂ · · · ⊂M1 ⊂M0 = U∗ ⊗M

with M t−1/M t ∼= M(b − σtdt) ⊕ ΠM(b − σtdt) for each t = 1, . . . , n. The
endomorphism x∗M preserves this filtration, and the induced endomorphism of

M t−1/M t is diagonalizable with exactly two eigenvalues ±
√
λb,t
√
λb,t − 1. Its√

λb,t
√
λb,t − 1-eigenspace is evenly isomorphic to M(b−σtdt), while the other

eigenspace is evenly isomorphic to ΠM(b− σtdt).

Proof. (1) The filtration is constructed in [B2, Lemma 4.3.7], as follows. By the tensor
identity

U ⊗M = U ⊗ (U(g)⊗U(b) V (b)) ∼= U(g)⊗U(b) (U ⊗ V (b)).

As a b-supermodule, U has a filtration 0 = U0 ⊂ U1 ⊂ · · · ⊂ Un = U in which the section
Ut/Ut−1 is spanned by the images of ut and u′t. Let Mt be the submodule of U ⊗M that
maps to U(g)⊗U(b) (Ut ⊗ V (λ)) under this isomorphism.
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Now fix t ∈ {1, . . . , n}. Let v1, . . . , vk be a basis for the even highest weight space
M(b)λb,0̄, so that d′tv1, . . . , d

′
tvk is a basis for M(b)λb,1̄. The subquotient Mt/Mt−1

∼=
U(g) ⊗U(b) (Ut/Ut−1 ⊗ V (b)) is generated by the images of the vectors {ut ⊗ vi, u′t ⊗
vi, ut⊗d′tvi, u′t⊗d′tvi |i = 1, . . . , k}, which by weight considerations span a b-supermodule
isomorphic to V (b+ σtdt)⊕ΠV (b+ σtdt). Hence,

Mt/Mt−1
∼= M(b+ σtdt)⊕ΠM(b+ σtdt).

The action of fr,s ⊗ es,r − f ′r,s ⊗ e′s,r on any of ut ⊗ vi, u′t ⊗ vi, ut ⊗ d′tvi or u′t ⊗ d′tvi is
zero unless r ≤ s = t, and if r < s = t then it sends these vectors into Mt−1. Therefore,
xM preserves the filtration. Moreover, this argument shows that it acts on the highest
weight space of the quotient Mt/Mt−1 in the same way as xt := ft,t ⊗ dt − f ′t,t ⊗ d′t.

Now consider the purely even subspace Si,t of Mt/Mt−1 with basis given by the images
of ut⊗ vi, u′t⊗d′tvi. Recalling that dt acts on vi and on d′tvi by λb,t, and that (d′t)

2 = dt,
it is straightforward to check that the matrix of the endomorphism xt of Si,t in the given
basis is equal to

A :=

(
λb,t λb,t
1 −λb,t

)
.

Also recall from our construction of V (b) that d′1 · · · d′2m acts on vi as the scalar cb from
(2.11), and it acts on d′tvi as −cb. Using this, another calculation shows that d′1 · · · d′2m
acts on Si,t as the matrix cb

λb,t
A. Similarly, on the purely odd subspace S′i,t with basis

given by the images of u′t ⊗ vi, ut ⊗ d′tvi, xt has matrix −A and d′1 · · · d′2m has matrix
− cb
λb,t

A.

Since the matrix A has eigenvalues ±
√
λb,t
√
λb,t + 1, the calculation made in the pre-

vious paragraph implies that xt is diagonalizable on Mt/Mt−1 with exactly these eigen-
values. Moreover on any even highest weight vector in its

√
λb,t
√
λb,t + 1-eigenspace,

we get that d′1 · · · d′2m acts as

cb
λb,t

√
λb,t
√
λb,t + 1 = cb+σtdt

.

This implies that the
√
λb,t
√
λb,t + 1-eigenspace is evenly isomorphic to M(b + σtdt).

Similarly, the −
√
λb,t
√
λb,t + 1-eigenspace is evenly isomorphic to ΠM(b+ σtdt).

(2) Similar. �

Corollary 3.3. For M ∈ ob sO, all roots of the minimal polynomials of xM and x∗M
(computed in the finite dimensional superalgebras EndsO(sF M) and EndsO(sEM)) be-
long to the set J from (2.1).

Proof. This is immediate from the theorem in case M is a Verma supermodule. We may
then deduce that it is true for all irreducibles, hence, for any M ∈ ob sO. �

Corollary 3.3 implies that we can decompose

sF =
⊕
j∈J

sFj , sE =
⊕
j∈J

sEj , (3.5)

where sFj (resp. sEj) is the subfunctor of sF (resp. sE) defined by letting sFjM (resp.
sEjM) be the generalized j-eigenspace of xM (resp. x∗M ) for each M ∈ ob sO. Recall
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that I denotes Z. For i ∈ I, we define the i-signature of b ∈ B to be the n-tuple
i-sig(b) = (i-sig1(b), . . . , i-sign(b)) ∈ {e, f, •}n with

i-sigt(b) :=

 f if either σt = + and bt = i, or σt = − and bt = i+ 1,
e if either σt = + and bt = i+ 1, or σt = − and bt = i,
• otherwise.

(3.6)

Theorem 3.4. Given b ∈ B and i ∈ I, let j :=
√
z + i

√
z + i+ 1. Then:

(1) sFjM(b) has a multiplicity-free filtration with sections that are evenly isomorphic
to the Verma supermodules

{M(b+ σtdt) | for 1 ≤ t ≤ n such that i-sigt(b) = f},
appearing from bottom to top in order of increasing index t.

(2) sEjM(b) has a multiplicity-free filtration with sections that are evenly isomor-
phic to the Verma supermodules

{M(b− σtdt) | for 1 ≤ t ≤ n such that i-sigt(b) = e},
appearing from top to bottom in order of increasing index t.

Proof. (1) It is immediate from Lemma 3.2 that sFjM(b) has a multiplicity-free filtration
with sections that are evenly isomorphic to the supermodules M(b + σtdt) for t =
1, . . . , n such that

√
λb,t
√
λb,t + 1 = j. Squaring both sides, this equation implies that(

λb,t + 1
2

)2
=
(
z + i+ 1

2

)2
. Hence,

λb,t = σt(z + bt) = − 1
2 ±

(
z + i+ 1

2

)
.

We deduce either that σt = + and bt = i, or σt = − and bt = i + 1. Since we squared
our original equation, it remains to check that we do indeed get solutions to that in both
cases. This is clear in the case that σt = +, and it follows in the case that σt = − using
also (1.3).

(2) Similar. �

Remark 3.5. Using Theorem 6.4 below, one can show that there are odd supernatural
isomorphisms c : sFj

∼⇒ sF−j and c∗ : sEj
∼⇒ sE−j for each j ∈ J . One conse-

quence (which could be checked directly right away) is that there is another version
of Theorem 3.4, in which one takes j := −

√
z + i

√
z + i+ 1 and replaces the Verma

supermodules M(b± σtdt) in the statement by their parity flips.

The superfunctors sF and sE are both left and right adjoint to each other via some
canonical (even) adjunctions. The adjunction making (sE, sF ) into an adjoint pair is
induced by the linear maps

ε : U∗ ⊗ U → k, φ⊗ u 7→ φ(u), η : k→ U ⊗ U∗, 1 7→
n∑
r=1

(ur ⊗ φr + u′r ⊗ φ′r).

Thus, the unit of adunction c : 1 ⇒ sF sE is defined on supermodule M by the map

cM : M
can−→ k⊗M η⊗id−→ U ⊗ U∗ ⊗ M , and the counit of adjunction d : sE sF ⇒ 1

is defined by dM : U∗ ⊗ U ⊗M ε⊗id−→ k⊗M can−→ M . Similarly, the adjunction making
(sF, sE) into an adjoint pair is induced by the linear maps

U ⊗ U∗ → k, u⊗ φ 7→ (−1)|φ||u|φ(u), k→ U∗ ⊗ U, 1 7→
n∑
r=1

(φr ⊗ ur − φ′r ⊗ u′r).
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The following lemma implies that these adjunctions restrict to adjunctions making
(sFj , sEj) and (sEj , sFj) into adjoint pairs for each j ∈ J . It follows that all of these
superfunctors send projectives to projectives, and they are all exact, i.e. they preserve
short exact sequences in sO.

Lemma 3.6. The supernatural transformation x∗ : sE ⇒ sE is both the left and right
mate of x : sF ⇒ sF with respect to the canonical adjunctions defined above.

Proof. We just explain how to check that x∗ is the left mate of x with respect to the
adjunction (sE, sF ); the argument for right mate is similar. We need to show for each
M ∈ ob sO that the composition

U∗ ⊗M id⊗cM−→ U∗ ⊗ U ⊗ U∗ ⊗M
id⊗xU∗⊗M−→ U∗ ⊗ U ⊗ U∗ ⊗M

dU∗⊗M−→ U∗ ⊗M

is equal to x∗M : U∗ ⊗M → U∗ ⊗M . Recall for this that x∗M is defined by left multipli-
cation by

∑n
r,s=1

(
f ′r,s ⊗ e′s,r − fr,s ⊗ es,r

)
, while xU∗⊗M is defined by left multiplication

by
∑n
r,s=1(fr,s ⊗ es,r ⊗ 1 + fr,s ⊗ 1 ⊗ es,r − f ′r,s ⊗ e′s,r ⊗ 1 − f ′r,s ⊗ 1 ⊗ e′s,r). Now one

computes the effect of both maps on homogeneous vectors of the form φt ⊗ v and φ′t ⊗ v
using (2.5)–(2.8). �

4. Bruhat order

Consider the Dynkin diagram c c c c c−2 −1 0 1 2
whose vertices are indexed

by the totally ordered set I = Z. We denote the associated Kac-Moody algebra by sl∞.
This is the Lie algebra of traceless, finitely-supported complex matrices whose rows and
columns are indexed by I. It is generated by the matrix units fi := ei+1,i and ei := ei,i+1

for i ∈ I. The natural representation V + of sl∞ is the module of column vectors with
standard basis {v+

i | i ∈ I}. We also need the dual natural representation V − with basis
{v−i | i ∈ I}. The action of the Chevalley generators on these bases is given by

eiv
+
j = δi+1,jv

+
i , eiv

−
j = δi,jv

−
i+1, (4.1)

fiv
+
j = δi,jv

+
i+1, fiv

−
j = δi+1,jv

−
i . (4.2)

The tensor product V ⊗σ := V σ1⊗· · ·⊗V σn has monomial basis {vb |b ∈ B} defined from
vb := vσ1

b1
⊗ · · · ⊗ vσn

bn
. Recalling (3.6), the Chevalley generators act on these monomials

by

fivb =
∑

1≤t≤n
i-sigt(b)=f

vb+σtdt
, eivb =

∑
1≤t≤n

i-sigt(b)=e

vb−σtdt
. (4.3)

This should be compared with Theorem 3.4, which already makes some connection be-
tween the endofunctors sFj , sEj of sO and the sl∞-module V ⊗σ.

We next introduce an important partial order � on B, which we call the Bruhat order
It is closely related to the inverse dominance order of [LW, Definition 3.2], which comes
from Lusztig’s construction of tensor products of based modules [L, §27.3]. The root
system of sl∞ has weight lattice P :=

⊕
i∈I Zωi where ωi is the ith fundamental weight.

For i ∈ I, we set

εi := ωi − ωi−1, αi := εi − εi+1.
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We identify εi with the weight of the vector v+
i in the sl∞-module V +. Then, v−i ∈ V −

is of weight −εi. For b ∈ B, let

wt(b) = (wt1(b), . . . ,wtn(b)) ∈ Pn (4.4)

be the n-tuple of weights defined from wtr(b) := σrεbr , so that vb ∈ V ⊗σ is of weight
|wt(b)| := wt1(b) + · · · + wtn(b) ∈ P . Because the weight spaces of V ± are all one-
dimensional, the map B→ Pn, b 7→ wt(b) is injective.

Definition 4.1. Let E denote the dominance order on P , so β E γ ⇔ γ−β ∈
⊕

i∈I Nαi.
The inverse dominance order on Pn is the partial order defined by declaring that
(β1, . . . , βn) � (γ1, . . . , γn) if and only if

β1 + · · ·+ βs E γ1 + · · ·+ γs,

for each s = 1, . . . , n, with the inequality being an equality when s = n. Finally, define
the Bruhat order � on B by a � b⇔ wt(a) � wt(b).

Our first lemma makes the definition of the Bruhat order more explicit. Using it, one
can check in particular that a � b implies that λa ≥ λb in the dominance order on t∗;
cf. [BLW, Lemma 3.4].

Lemma 4.2. For a ∈ B, i ∈ I and 1 ≤ s ≤ n, we let

N[1,s](a, i) := #{1 ≤ r ≤ s | ar > i, σr = +} −#{1 ≤ r ≤ s | ar > i, σr = −}.
Then we have that a � b if and only if

• N[1,n](a, i) = N[1,n](b, i) for all i ∈ I;
• N[1,s](a, i) ≥ N[1,s](b, i) for all i ∈ I and s = 1, . . . , n− 1.

Proof. This is a special case of [BLW, Lemma 2.17]. �

Lemma 4.3. Assume that a � b and i-sigr(a) = i-sign(b) = f for some i ∈ I and
1 ≤ r ≤ n. Then a+ σrdr � b+ σndn, with equality if and only if a = b and r = n.

Proof. We use the conditions from Lemma 4.2. For either j 6= i and 1 ≤ s ≤ n, or j = i
and 1 ≤ s < r, we have that

N[1,s](a+ σrdr, j) = N[1,s](a, j) ≥ N[1,s](b, j) = N[1,s](b+ σndn, j).

For r ≤ s < n, we have that

N[1,s](a+ σrdr, i) = N[1,s](a, i) + 1 ≥ N[1,s](b, i) + 1 > N[1,s](b, i) = N[1,s](b+ σndn, i).

Finally, N[1,n](a+ σrdr, i) = N[1,n](a, i) + 1 = N[1,n](b, i) + 1 = N[1,n](b+ σndn, i). �

To prepare for the next lemma, suppose that we are given b ∈ B. Define a ∈ B by
setting a1 := b1, then inductively defining as for s = 2, . . . , n as follows.

• If σs = + then as is the greatest integer such that as ≤ bs, and the following
hold for all 1 ≤ r < s:
◦ if σr = + then as < ar;
◦ if σr = − then as < br.

• If σs = − then as is the smallest integer such that as ≥ bs, and the following
hold for all 1 ≤ r < s:
◦ if σr = − then as > ar;
◦ if σr = + then as > br.
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Also define a monomial X = Xn · · ·X2 in the Chevalley generators {fi | i ∈ I} by setting

Xr :=

{
fbr−1 · · · far+1far if σr = +,
fbr · · · far−2far−1 if σr = −,

for each r = 2, . . . , n.

Example 4.4. If σ = (+,+,−,+,−,−) and b = (3, 4, 3, 4, 3, 4), then a = (3, 2, 5, 1, 6, 7)
and X = (f4f5f6)(f3f4f5)(f3f2f1)(f3f4)(f3f2).

Lemma 4.5. In the above notation, we have that Xva = vb+(a sum of vc’s for c � b).

Proof. We proceed by induction on n, the result being trivial in case n = 1. For n > 1,
let σ̄ := (σ1, . . . , σn−1), ā := (a1, . . . , an−1), b̄ := (b1, . . . , bn−1) and X̄ := Xn−1 · · ·X2.
Applying the induction hypothesis in the sl∞-module V ⊗σ̄, we get that

X̄vā = vb̄ + (a sum of vc̄’s for c̄ � b̄).
Now we observe that if fi is a Chevalley generator appearing in one of the monomials
Xr for r < n, then fiv

σn
an = 0. This follows from the definitions: if σn = + we must show

that i 6= an, which follows as i ≥ ar > an if σr = + or i ≥ br > an if σr = −; if σn = −
we must show that i 6= an − 1, which follows as i < br < an if σr = + or i < ar < an if
σr = −. Hence, letting b̃ := (b1, . . . , bn−1, an), we deduce that

X̄va = vb̃ + (a sum of vc’s for c � b̃).
Finally we act with Xn, which sends vσn

an to vσn

bn
, and apply Lemma 4.3. �

Theorem 4.6. For every b ∈ B, the indecomposable projective supermodule P (b) has
a Verma flag with top section evenly isomorphic to M(b) and other sections evenly
isomorphic to M(c)’s for c ∈ B with c � b.

Proof. Let notation be as in Lemma 4.5. Let i1, . . . , il ∈ I be defined so that X is
the monomial fil · · · fi2fi1 . Let jk :=

√
z + ik

√
z + ik + 1 for each k and consider the

supermodule
P := sFjl · · · sFj2sFj1M(a).

For each 1 ≤ r < s ≤ n, we have that ar > as if σr = σs = +, ar < as if σr = σs = −, and
ar 6= as if σr 6= σs. This implies that the weight λa is typical and dominant, hence M(a)
is projective by Lemma 2.4. Since each sFj sends projectives to projectives, we deduce
that P is projective. Since the combinatorics of (4.3) matches that of Theorem 3.4, we
can reinterpret Lemma 4.5 as saying that P has a Verma flag with one section evenly
isomorphic to M(b) and all other sections evenly isomorphic to M(c)’s for c � b. In
fact, the unique section isomorphic to M(b) appears at the top of this Verma flag, thanks
the order of the sections arising from Theorem 3.4(1). Hence, P has a summand evenly
isomorphic to P (b), and it just remains to apply Lemma 2.5. �

Corollary 4.7. For b ∈ B, we have that [M(b) : L(b)] = 1. All other composition
factors of M(b) are evenly isomorphic to L(c)’s for c ≺ b.

Proof. This follows from Theorem 4.6 and the following analog of BGG reciprocity: for
a, b ∈ B, we have that

[M(b) : L(a)] = dim HomsO(P (a),M(b)?)0̄ = (P (a) : M(b)),

[M(b) : ΠL(a)] = dim HomsO(P (a),M(b)?)1̄ = (P (a) : ΠM(b)).

The various equalities here follow from Lemmas 2.5 and 2.3. �
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Corollary 4.8. For any b ∈ B, every irreducible subquotient of the indecomposable
projective P (b) is evenly isomorphic to L(a) for a ∈ B with |wt(a)| = |wt(b)|.

Proof. By Theorem 4.6, P (b) has a Verma flag with sections M(c) for c � b. By
Corollary 4.7, the composition factors of M(c) are L(a)’s for a � c. Hence, every
irreducible subquotient of P (b) is evenly isomorphic to L(a) for a ∈ B such that a �
c � b for some c. This condition implies that |wt(a)| = |wt(b)|. �

5. Weak categorical action

Let O be the Serre subcategory of sO generated by {L(b) | b ∈ B}, i.e. it is the full
subcategory of sO consisting of all supermodules whose composition factors are evenly
isomorphic to L(b)’s for b ∈ B. Since each L(b) is of type M, there are no non-zero odd
morphisms between objects of O. Because of this, we forget the Z /2-grading and simply
view O as a k-linear category rather than a supercategory.

Theorem 5.1. We have that sO = O ⊕ΠO in the sense defined in the introduction.

Proof. Let ΠO be the Serre subcategory of sO generated by {ΠL(a) | a ∈ B}. By
Corollary 4.8, all even extensions between ΠL(a) and L(b) are split. Hence, every
supermodule in sO decomposes uniquely as a direct sum of an object of O and an object
of ΠO. The result follows. �

Remark 5.2. For typical blocks, Theorem 5.1 has a more direct proof exploiting the
action of the anticenter of U(g); see [F, §3.1].

In order to state our next theorem, we briefly recall the following definition due to
Cline, Parshall and Scott [CPS]:

Definition 5.3. A highest weight category is a Schurian category C in the sense of
Definition 2.2, together with an interval-finite poset (Λ,≤) indexing a complete set of
irreducible objects {L(λ) | λ ∈ Λ}, subject to the following axiom. For each λ ∈ Λ, let
P (λ) be a projective cover of L(λ) in C. Define the standard object ∆(λ) to be the largest
quotient of P (λ) such that [∆(λ) : L(λ)] = 1 and [∆(λ) : L(µ)] = 0 for µ 6≤ λ. Then
we require that P (λ) has a filtration with top section isomorphic to ∆(λ) and all other
sections of the form ∆(µ) for µ > λ.

Theorem 5.4. The category O is a highest weight category with weight poset (B,�).
Its standard objects are the Verma supermodules {M(b) | b ∈ B}.

Proof. It is clear that O is a Schurian category with isomorphism classes of irreducible
objects represented by {L(b) | b ∈ B}. By Theorem 4.6, P (b) has a Verma flag with
M(b) at the top and other sections that are evenly isomorphic to M(c)’s for c � b. It
just remains to observe that the Verma supermodules M(b) coincide with the standard
objects ∆(b). This follows using the filtration just described plus Corollary 4.7. �

Remark 5.5. By Lemma 2.3, the duality ? on sO restricts to a duality ? : O → O
fixing isomorphism classes of irreducible objects.

Next, take i ∈ I and set j :=
√
z + i

√
z + i+ 1. Theorem 3.4 implies that the exact

functors sFj and sEj send the standard objects in O to objects of O with a Verma flag.
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Hence, they send arbitrary objects in O to objects of O. Thus, their restrictions define
endofunctors

Fi := sFj |O : O → O, Ei := sEj |O : O → O. (5.1)

Again, these functors are both left and right adjoint to each other. Let O∆ be the
full subcategory of O consisting of all objects possessing a Verma flag. This is an
exact subcategory of O. Its complexified Grothendieck group C⊗ZK0(O∆) has basis
{[M(b)] | b ∈ B}.

Theorem 5.6. For each i ∈ I, the functors Fi and Ei are exact endofunctors of O∆.
Moreover, if we identify C⊗ZK0(O∆) with V ⊗σ so [M(b)] ↔ vb for each b ∈ B, then
the induced endomorphisms [Fi] and [Ei] of the Grothendieck group act in the same way
as the Chevalley generators fi and ei of sl∞.

Proof. Compare Theorem 3.4 with (4.3). �

Thus, we have constructed a highest weight category O with weight poset (B,�), and
equipped it with a weak categorical action of the Lie algebra sl∞ in the sense of [CR, R].

6. Strong categorical action

In this section, we upgrade the weak categorical action of sl∞ on O constructed so far
to a strong categorical action. For the following definition, we represent morphisms in
a strict monoidal category via the usual string calculus, adopting the same conventions
for horizontal and vertical composition as [KL].

Definition 6.1. The quiver Hecke category of type sl∞ is the strict k-linear monoidal

category QH with objects generated by the set I, and morphisms generated by •
i

: i→ i

and
i2 i1

: i2 ⊗ i1 → i1 ⊗ i2, subject to the following relations:

i2 i1

•
−

i2 i1
• =

i2 i1
• −

i2 i1

•
=

 i2 i1

if i1 = i2,

0 if i1 6= i2;

i2 i1

=



0 if i1 = i2,

(i2 − i1)

i2 i1

• + (i1 − i2)

i2 i1

• if |i1 − i2| = 1,

i2 i1

if |i1 − i2| > 1;

i3 i2 i1

−

i3 i2 i1

=


(i2 − i1)

i3 i2 i1

if i1 = i3 and |i1 − i2| = 1,

0 otherwise.

Let Id denote the set of words i = id · · · i1 of length d in the alphabet I, and identify
i ∈ Id with the object id ⊗ · · · ⊗ i1 ∈ obQH. Then, the locally unital algebra

QHd :=
⊕
i,i′∈Id

HomQH(i, i′) (6.1)
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is the quiver Hecke algebra of type sl∞ defined originally by Khovanov and Lauda [KL]
and Rouquier [R].

Recall for a k-linear category C that there is an associated strict k-linear monoidal
category End(C) consisting of k-linear endofunctors and natural transformations. The
remainder of the section will be devoted to the proof of the following theorem.

Theorem 6.2. There is a strict monoidal functor Φ : QH → End(O) sending the
generating objects i ∈ I to the endofunctors Fi from (5.1). Moreover, for all M ∈ obO
and i ∈ I, the endomorphism FiM → FiM defined by the natural transformation Φ

(
•
i

)
is nilpotent.

In order to construct Φ, we need to pass through two intermediate objects AHC, the
(degenerate) affine Hecke-Clifford supercategory, and QHC, which is a certain quiver
Hecke-Clifford supercategory in the sense of [KKT]. Both AHC and QHC are examples
of (strict) monoidal supercategories, meaning that they are supercategories equipped with
a monoidal product in an appropriate enriched sense. We refer the reader to the intro-
duction of [BE1] for the precise definition, just recalling that morphisms in a monoidal
supercategory satisfy the super interchange law rather than the usual interchange law of
a monoidal category: in terms of the string calculus as in [BE1] we have that

g
f = gf = (−1)|f ||g| g

f
(6.2)

for homogeneous morphisms f and g of parities |f | and |g|, respectively.

Definition 6.3. The (degenerate) affine Hecke-Clifford supercategory AHC is the strict
monoidal supercategory with a single generating object 1, even generating morphisms
• : 1→ 1 and : 1⊗ 1→ 1⊗ 1, and an odd generating morphism ◦ : 1→ 1. These

are subject to the following relations:

◦
• = − •

◦ , ◦
◦ = , = ,

◦
= ◦

• − • = − ◦◦ , = .

Denoting the object 1⊗d ∈ obAHC simply by d, the (degenerate) affine Hecke-Clifford
superalgebra is the superalgebra

AHCd := EndAHC(d). (6.3)

This was introduced originally by Nazarov [N, §3].

For a supercategory C, we write End(C) for the strict monoidal supercategory consist-
ing of superfunctors and supernatural transformations.

Theorem 6.4. There is a strict monoidal superfunctor Ψ : AHC → End(sO) sending
the generating object 1 to the endofunctor sF = U ⊗ − from (3.1), and the generating

morphisms • , ◦ and to the supernatural transformations x, c and t which are defined
on M ∈ ob sO as follows:

• xM : U ⊗M → U ⊗M is left multiplication by the tensor ω from (3.2);
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• cM : U ⊗M → U ⊗M is left multiplication by
√
−1 f ′ ⊗ 1 for f ′ as in (3.4);

• tM : U ⊗ U ⊗M → U ⊗ U ⊗M sends u⊗ v ⊗m 7→ (−1)|u||v|v ⊗ u⊗m.

Proof. This an elementary check of relations, similar to the one made in the proof of
[HKS, Theorem 7.4.1]. �

Definition 6.5. The quiver Hecke-Clifford supercategory of type sl∞ is the monoidal
supercategory QHC with objects generated by the set J , even generating morphisms

•
j1

: j1 → j1 and
j2 j1

: j2⊗j1 → j1⊗j2, and odd generating morphisms ◦
j1

: j1 → −j1,

for all j1, j2 ∈ J . These are subject to the following relations:

•
◦

j1

= − ◦
•

j1

, ◦
◦

j1

=

j1

, ◦
j2 j1

=
◦

j2 j1

,
◦

j2 j1

= ◦
j2 j1

,

j2 j1
• −

j2 j1

•
=


j2 j1

if j1 = j2,

◦ ◦
j2 j1

if j1 = −j2,

0 otherwise;

j2 j1

•
−

j2 j1
• =


j2 j1

if j1 = j2,

− ◦ ◦
j2 j1

if j1 = −j2,

0 otherwise;

j2 j1

=



0 if i1 = i2,

κ1(i1 − i2)
j2 j1

• + κ2(i2 − i1)
j2 j1

• if |i1 − i2| = 1,

j2 j1

if |i1 − i2| > 1;

j3 j2 j1

−
j3 j2 j1

=



κ1(i1 − i2)
j3 j2 j1

if j1 = j3 and |i1 − i2| = 1,

κ1(i2 − i1) ◦ ◦
j3 j2 j1

if j1 = −j3 and |i1 − i2| = 1,

0 otherwise.

In the above, we have adopted the convention given jr ∈ J that ir ∈ I and κr ∈ {±1}
are defined from jr = κr

√
z + ir

√
z + ir + 1. Identifying the word j = jd · · · j1 ∈ Jd

with jd ⊗ · · · ⊗ j1 ∈ obQHC, the quiver Hecke-Clifford superalgebra is the locally unital
algebra

QHCd :=
⊕

j,j′∈Jd

HomQHC(j, j
′). (6.4)
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This is exactly as in [KKT, Definition 3.5] in the special case of the sl∞-quiver.

Now we are going to exploit a remarkable isomorphism between certain completions

ÂHCd and Q̂HCd of the superalgebras AHCd and QHCd from (6.3) and (6.4), which
was constructed in [KKT]. To define these, we need some further notation.

Numbering strands of a diagram by 1, . . . , d from right to left, AHCd is generated
by its elements xr, cr (1 ≤ r ≤ d) and tr (1 ≤ r < d) corresponding to the closed dot
on the rth strand, the open dot on the rth strand, and the crossing of the rth and
(r + 1)th strands, respectively. Let HCd := Sd n Cd be the Sergeev superalgebra, that
is, the smash product of the symmetric group Sd with basic transpositions t1, . . . , td−1

acting on the Clifford superalgebra Cd on generators c1, . . . , cd. Let Ad denote the
purely even polynomial superalgebra k[x1, . . . , xd]. By the basis theorem for AHCd
established in [BK, §2-k], the natural multiplication map gives a superspace isomorphism

HCd ⊗ Ad
∼→ AHCd. Transporting the multiplication on AHCd to HCd ⊗ Ad via this

isomorphism, the following describe how to commute a polynomial f ∈ Ad past the
generators of HCd:

(1⊗ f)(cr ⊗ 1) = cr ⊗ cr(f), (6.5)

(1⊗ f)(tr ⊗ 1) = tr ⊗ tr(f) + 1⊗ ∂r(f) + crcr+1 ⊗ ∂̃r(f), (6.6)

for operators cr, tr, ∂r, ∂̃r : Ad → Ad such that

• tr is the automorphism that interchanges xr and xr+1 and fixes all other gener-
ators;

• cr is the automorphism that sends xr 7→ −xr and fixes all other generators;

• ∂r is the Demazure operator ∂r(f) := tr(f)−f
xr−xr+1

;

• ∂̃r is the twisted Demazure operator cr+1 ◦ ∂r ◦ cr, so ∂̃r(f) = tr(f)−cr+1(cr(f))
xr+xr+1

.

Given a tuple µ = (µi)i∈I of non-negative integers all but finitely many of which are
zero, the quotient superalgebra

AHCd(µ) := AHCd

/〈∏
i∈I

(
x2

1 − (z + i)(z + i+ 1)
)µi
〉

(6.7)

is a (degenerate) cyclotomic Hecke-Clifford superalgebra in the sense of [BK, §3.e]. It is
finite dimensional. Moreover, all roots of the minimal polynomials of all xr ∈ AHCd(µ)
belong to the set J . It follows for each j = jd · · · j1 in the set Jd of words of length
d in letters J that there is an idempotent 1j ∈ AHCd(µ) defined by the projection
onto the simultaneous generalized eigenspaces for x1, . . . , xd with eigenvalues j1, . . . , jd,
respectively. Moreover, we have that

AHCd(µ) =
⊕

j,j′∈Jd

1j′AHCd(µ)1j .

If µ ≤ µ′, i.e. µi ≤ µ′i for all i, there is a canonical surjection AHCd(µ
′) � AHCd(µ)

sending xr, cr, tr, 1j ∈ AHCd(µ′) to the elements of AHCd(µ) with the same names. Let

ÂHCd := lim←−
µ

AHCd(µ) (6.8)

be the inverse limit of this system of superalgebras taken in the category of locally unital
superalgebras with distinguished idempotents indexed by Jd. Using the basis theorem



TYPE A BLOCKS 21

for the cyclotomic quotients AHCd(µ) from [BK, §3-e], one can identify ÂHCd with the
completion defined in [KKT, Definition 5.3]1. In particular, letting

Âd :=
⊕
j∈Jd

k[[x1 − j1, . . . , xd − jd]]1j ,

there is a superspace isomorphism HCd ⊗ Âd
∼→ ÂHCd induced by the obvious mul-

tiplication maps HCd ⊗ Âd � AHCd(µ) for all µ. The multiplication on HCd ⊗ Âd
corresponding to the one on ÂHCd via this isomorphism has the following properties for

all f ∈ Âd:
(1⊗ f1j)(cr ⊗ 1j′) = cr ⊗ cr(f)1cr(j)1j′ , (6.9)

(1⊗ f1j)(tr ⊗ 1j′) = tr ⊗ tr(f)1tr(j)1
′
j + 1⊗

tr(f)1tr(j) − f1j

xr − xr+1
1j′

+ crcr+1 ⊗
tr(f)1tr(j) − cr+1(cr(f))1cr+1(cr(j))

xr + xr+1
1j′ . (6.10)

The fractions on the right hand side of (6.10) make sense: in the first, (xr − xr+1)1j′ is
invertible unless j′r = j′r+1, in which case the expression equals ∂r(f)1j1j′ ; the second is
fine when j′r 6= −j′r+1 as then (xr + xr+1)1j′ is invertible, while if j′r = −j′r+1 it equals

∂̃r(f)1tr(j)1j′ .

Similarly, there is a completion Q̂HCd of QHCd. To introduce this, we denote the
elements of QHCd1j defined by an open dot on the rth strand, a closed dot on the rth
strand and a crossing of the rth and (r+1)th strands by γr1j , ξr1j and τr1j , respectively.
For µ = (µi)i∈I as above, we define the cyclotomic quiver Hecke-Clifford superalgebra

QHCd(µ) := QHCd

/〈
ξ2µi

1 1j

∣∣∣ j ∈ Jd, i ∈ I with j2
1 = (z + i)(z + i+ 1)

〉
. (6.11)

Using the relations, it is easy to see that the images of all ξr1j are nilpotent in QHCd(µ).
Then we set

Q̂HCd := lim←−
µ

QHCd(µ), (6.12)

taking the inverse limit once again in the category of locally unital superalgebras with
distinguished idempotents indexed by Jd. The obvious locally unital homomorphisms
QHCd⊗k[ξ1,...,ξd]k[[ξ1, . . . , ξd]]� QHCd(µ) for each µ induce a surjective homomorphism

QHCd ⊗k[ξ1,...,ξd] k[[ξ1, . . . , ξd]]→ Q̂HCd.

This map is actually an isomorphism, as may be deduced using the basis theorem for
QHCd from [KKT, Corollary 3.9] plus the observation that the image of any non-zero
element u ∈ QHCd is non-zero in QHCd(µ) for sufficiently large µ; the latter assertion
follows by elementary considerations involving the natural Z-grading on QHCd. Conse-

quently, Q̂HCd is isomorphic to the completion introduced in a slightly different way in

[KKT, Definition 3.16]. Moreover, there is a locally unital embedding QHCd ↪→ Q̂HCd.
At last, we are ready to state the crucial theorem from [KKT]. We need this only

in the special situation of [KKT, §5.2(i)(a)], but emphasize that the results obtained in
[KKT] are substantially more general. In particular, for us, all elements of the set I are

1Note there is a sign error in [KKT, (5.5)]: it should read −CaCa+1 . . . .
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even in the sense of [KKT, §3.5], so that we do not need the more general quiver Hecke
superalgebras of [KKT].

Theorem 6.6. There is a superalgebra isomorphism Q̂HCd
∼→ ÂHCd such that

1j 7→ 1j , γr1j 7→ cr1j , ξr1j 7→ yr1j , τr1j 7→ trgr1j + fr1j + crcr+1f̃r1j ,

for all j ∈ Jd and r. Here, yr ∈ k[[xr − jr]] and gr, fr, f̃r ∈ k[[xr − jr, xr+1 − jr+1]] are
the power series determined uniquely by the following:

jr = κr
√
z + ir

√
z + ir + 1 for ir ∈ I and κr ∈ {±},

yr = κr

(√
x2
r + 1

4 −
(
z + ir + 1

2

))
∈ (xr − jr),

pr =
(x2
r − x2

r+1)2

2(x2
r + x2

r+1)− (x2
r − x2

r+1)2
,

gr =



−1 if ir < ir+1,
pr (κryr − κr+1yr+1) if ir = ir+1 + 1,
pr if ir > ir+1 + 1,√

pr
yr−yr+1

∈ xr−xr+1

yr−yr+1
+ (xr − xr+1) if jr = jr+1,

√
pr

yr+yr+1
∈ xr+xr+1

yr+yr+1
+ (xr + xr+1) if jr = −jr+1;

fr =
gr

xr − xr+1
−

δjr,jr+1

yr − yr+1
, f̃r =

gr
xr + xr+1

−
δjr,−jr+1

yr + yr+1
.

(All of this notation depends implicitly on j.)

Proof. This is a special case of [KKT, Theorem 5.4]. To help the reader to translate
between our notation and that of [KKT], we note that the set J in [KKT] is the same

as our set J , but the set I there is Ĩ := {j2 | j ∈ J}, which is different from our I. We
have made various other choices as stipulated in [KKT] in order to produce concrete

formulae: we have taken the functions ε : J → {0, 1} and h : Ĩ → k from [KKT, (5.7)]
so that ε(j) = (1−κ)/2 and h(j2) = z+ i+ 1

2 for J 3 j = κ
√
z + i

√
z + i+ 1; for [KKT,

(5.11)] we took Gjr,jr+1
(our gr) to be −1 when ir < ir+1. The fact that gr, fr and f̃r

are all well-defined elements of k[[xr− jr, xr+1− jr+1]] is justified by [KKT, Lemma 5.5].
Note also that the ambiguous square roots appearing in the formulae for yr and gr are
uniquely determined by the containments we have specified. �

Proof of Theorem 6.2. For i = id · · · i1 ∈ Id, let Fi := Fid · · ·Fi1 : O → O. The usual
vertical composition of natural transformations makes the vector space

NTd :=
⊕
i,i′∈Id

Hom(Fi, Fi′)

into a locally unital algebra with distinguished idempotents {1i | i ∈ Id} arising from
the identity endomorphisms of each Fi. Also horizontal composition of natural trans-
formations defines homomorphisms ad2,d1 : NTd2 ⊗NTd1 → NTd2+d1 for all d1, d2 ≥ 0.
Recalling (6.1), the data of a strict monoidal functor Φ : QH → End(O) sending i to Fi
is just the same as a family of locally unital algebra homomorphisms Φd : QHd → NTd
for all d ≥ 0, such that 1i 7→ 1i for each i ∈ Id and

ad2,d1 ◦ Φd2 ⊗ Φd1 = Φd2+d1 ◦ bd2,d1 (6.13)
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for all d1, d2 ≥ 0, where bd2,d1 : QHd2 ⊗ QHd1 → QHd2+d1 is the obvious embedding
defined by horizontal concatenation of diagrams.

To construct Φd, we start from the monoidal superfunctor Ψ from Theorem 6.4.
This induces superalgebra homomorphisms Ψd : AHCd → End(sF d) for all d ≥ 0,
where End(sF d) denotes supernatural endomorphisms of sF d : sO → sO. For each
M ∈ ob sO, Corollary 3.3 implies that evM ◦Ψd : AHCd → EndsO(sF dM) factors
through all sufficiently large cyclotomic quotients AHCd(µ). Hence, Ψd extends uniquely

to a locally unital superalgebra homomorphism Ψ̂d : ÂHCd → SNTd, where

SNTd :=
⊕

j,j′∈Jd

Hom(sFj , sFj′) ⊂ End(sF d)

and sFj := sFjd · · · sFj1 . Composing Ψ̂d with the isomorphism from Theorem 6.6 and

the inclusion QHCd ↪→ Q̂HCd, we obtain a locally unital superalgebra homomorphism
Θd : QHCd → SNTd. It is obvious from Definitions 6.1 and 6.5 that there is a locally
unital algebra homomorphism in : QHd → (QHCd)0̄ sending the idempotent 1i to 1j
for j with jr :=

√
z + ir

√
z + ir + 1, and taking the elements of QHd1i defined by the

dot on the rth strand and the crossing of the rth and (r+ 1)th strands to ξr1j and τr1j ,
respectively. Also, recalling (5.1), restriction from sO to O defines a homomorphism

pr :
⊕

j,j′∈Jd
+

1j′(SNTd)0̄1j → NTd

where J+ :=
{√

z + i
√
z + i+ 1

∣∣ i ∈ I} ⊂ J . Then the composition pr ◦ Θd ◦ in gives
us the desired locally unital homomorphism Φd : QHd → NTd sending 1i 7→ 1i for
each i ∈ Id. It just remains to observe that the property (6.13) is satisfied, and that
Φd(xr1i)M is nilpotent for each r, i ∈ Id and M ∈ obO. These things follow from the
explicit formulae in Theorems 6.4 and 6.6 plus Corollary 3.3 once again. �

7. Proof of the Main Theorem

Everything is now in place for us to be able to prove the Main Theorem from the
introduction. Recall σ = (σ1, . . . , σn) is a sign sequence, and V ⊗σ denotes the sl∞-
module V σ1 ⊗· · ·⊗V σn . The following is a special case of [BLW, Definition 2.10], which
reformulated [LW, Definiton 3.2] for tensor products of minuscule representations; it may
be helpful to recall Definitions 4.1, 5.3 and 6.1 at this point.

Definition 7.1. An sl∞-tensor product categorification of V ⊗σ is the following data:

• a highest weight category C with weight poset (B,�);
• adjoint pairs (Fi, Ei) of endofunctors of C for each i ∈ I;
• a strict monoidal functor Φ : QH → End(C) with Φ(i) = Fi for each i ∈ I.

We impose the following additional axioms for all i ∈ I, b ∈ B and M ∈ ob C:
• Ei is isomorphic to a left adjoint of Fi;
• Fi∆(b) has a ∆-flag with sections {∆(b+ σtdt) | 1 ≤ t ≤ n, i-sigt(b) = f};
• Ei∆(b) has a ∆-flag with sections {∆(b− σtdt) | 1 ≤ t ≤ n, i-sigt(b) = e};
• the endomorphism Φ

(
•
i

)
M

: FiM → FiM is nilpotent.

Theorems 5.1, 5.4, 5.6 and 6.2 together imply:
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Theorem 7.2. The supercategory sO defined in section 2 splits as O ⊕ ΠO, with O
admitting all of the additional structure needed to make it into an sl∞-tensor product
categorification of V ⊗σ.

As we already mentioned in the introduction, to complete the proof of our Main
Theorem, we just need to appeal to the following results from [BLW]:

Theorem 7.3. The supercategory sO′ from the introduction decomposes as O′ ⊕ ΠO′,
with O′ admitting the structure of an sl∞-tensor product categorification of V ⊗σ.

Proof. This is a special case of [BLW, Theorem 3.10]. �

Theorem 7.4. Any two sl∞-tensor product categorifications of V ⊗σ are strongly equiv-
ariantly equivalent (in the sense of [LW, Definition 3.1]).

Proof. This is a special case of [BLW, Theorem 2.12]. �

We get at once that the categories O and O′ are equivalent, hence so too are sO and
sO′. This already proves the Main Theorem from the introduction in the case that n is
even. When n is odd, one also needs to apply the Lemma from the introduction to see
that the supercategory sO in the statement of the Main Theorem is the Clifford twist of
the supercategory sO being studied here.

8. Canonical basis

Combining our Main Theorem with the results of [CLW, BLW], it follows that the
composition multiplicities [M(a) : L(b)] can be obtained by evaluating certain parabolic
Kazhdan-Lusztig polynomials at q = 1. In this section, we explain a simple algorithm to
compute these polynomials explicitly. The algorithm is similar in spirit to the algorithm
explained in [B1, §2-j], but actually the variant here is both easier to implement and a
little faster. It also has the advantage of working for arbitrary sign sequences σ, whereas
the approach in [B1] only makes sense for normally-ordered σ’s, i.e. ones in which all +’s
preceed all −’s. (But note that one can easily transition between different sign sequences
as explained in [CL, §5].)

We first need to introduce the quantum analog of the sl∞-module V ⊗σ. We will
use similar notation to before, but decorated with dots to indicate q-analogs. Consider
the generic quantized enveloping algebra Uqsl∞ over the field Q(q). This has standard

generators {ėi, ḟi, k̇i, k̇−1
i | i ∈ I}. We work with the comultiplication ∆ defined from

∆(ḟi) = 1⊗ ḟi + ḟi ⊗ k̇i, ∆(ėi) = k̇−1
i ⊗ ėi + ėi ⊗ 1, ∆(k̇i) = k̇i ⊗ k̇i. (8.1)

We have the natural Uqsl∞-module V̇ + on basis {v̇+
i | i ∈ I}, and its dual V̇ − on basis

{v̇−i | i ∈ I}. The Chevalley generators ḟi and ėi act on these basis vectors by exactly
the same formulae (4.1)–(4.2) as at q = 1, and also

k̇iv̇
+
j = qδi,j−δi+1,j v̇+

j , k̇iv̇
−
j = qδi+1,j−δi,j v̇−j . (8.2)

Then we form the tensor space V̇ ⊗σ := V̇ σ1 ⊗ · · · ⊗ V̇ σn , which is a Uqsl∞-module with
its monomial basis

{
v̇b := v̇σ1

b1
⊗ · · · ⊗ v̇σn

bn

∣∣ b ∈ B
}

.

Next we pass to a certain completion V̂ ⊗σ. Recall the inverse dominance order � on

Pn from Definition 4.1. We define V̂ ⊗σ to be the Q(q)-vector space consisting of formal
linear combinations of the form

∑
b∈B pb(q)v̇b for rational functions pb(q) ∈ Q(q), such
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that the support {b ∈ B | pb(q) 6= 0} is contained in a finite union of sets of the form
{b ∈ B | wt(b) � β} for β ∈ Pn.

Lemma 8.1. The action of Uqsl∞ on V̇ ⊗σ extends to a well-defined action on V̂ ⊗σ such

that u
(∑

b∈B pb(q)v̇b
)

=
∑
b∈B pb(q)uv̇b for every u ∈ Uqsl∞. Moreover, V̂ ⊗σ splits as

the direct sum of its weight spaces.

Proof. For the first assertion, we need to show that the expression
∑
b∈B pb(q)uv̇b sat-

isfies the condition on its support required to belong to V̂ ⊗σ. It suffices to check this
for u ∈ {ḟi, ėi | i ∈ I}. If wt(b) � (β1, . . . , βn) and va appears with non-zero coeffi-

cient in the expansion of ėivb (resp. ḟivb), then wt(a) is equal to wt(b) with αi added
(resp. subtracted) from one of its entries. Hence, wt(a) � (β1 + αi, β2, . . . , βn) (resp.
wt(a) � (β1, . . . , βn−1, βn − αi)). This is all that is needed.

The fact that V̂ ⊗σ is a direct sum of its weight spaces follows because all vb with
wt(b) � (β1, . . . , βn) are of the same weight β1 + · · ·+ βn. �

The completion V̂ ⊗σ admits a bar involution ψ : V̂ ⊗σ → V̂ ⊗σ which is anti-linear
with respect to the field automorphism Q(q) → Q(q), q 7→ q−1. To define ψ, let Θ be
Lusztig’s quasi-R-matrix from [L, Theorem 4.1.2]; note for this due to our different choice

of ∆ compared to [L] that Lusztig’s v is our q−1 (and his Ei, Fi,Ki are our ėi, ḟi, k̇
−1
i ).

We proceed by induction on n, setting ψ(v̇+
i ) = v̇+

i and ψ(v̇−i ) = v̇−i in case n = 1.
For n > 1, let σ̄ and b̄ denote the (n − 1)-tuples (σ1, . . . , σn−1) and (b1, . . . , bn−1),

respectively. Assuming that the analog ψ̄ of ψ on the space V̂ ⊗σ̄ has already been

defined by induction, we define ψ on V̂ ⊗σ by setting

ψ

(∑
b∈B

pb(q)v̇b

)
:=
∑
b∈B

pb(q
−1) Θ

(
ψ̄(v̇b̄

)
⊗ v̇σn

bn
). (8.3)

Lemma 8.2. The antilinear map ψ defined by (8.3) is a well-defined involution of V̂ ⊗σ

preserving all weight spaces and commuting with the actions of ḟi, ėi for all i ∈ I. More-
over, ψ(v̇b) is equal to v̇b plus a (possibly infinite) Z[q, q−1]-linear combination of v̇a’s
for a � b.

Proof. Recall that Θ is a formal sum of terms Θβ for β ∈
⊕

i∈I Nαi, with Θ0 = 1 and
Θβ ∈ (U−q sl∞)−β ⊗ (U+

q sl∞)β . The only monomials in the generators of U+
q sl∞ that

are non-zero on v̇σn
j are of the form ėiėi+1 · · · ėj−1 for i ≤ j if σn = + (resp. the form

ėi−1ėi−2 · · · ėj for i ≥ j if σn = −). Using also the integrality of the quasi-R-matrix from
[L, Corollary 24.1.6] (or a direct calculation from [L, Theorem 4.1.2(b)]), it follows for

any v ∈ V̂ ⊗σ̄ that

Θ
(
v ⊗ v̇σn

j

)
= v ⊗ v̇σn

j +
∑
i

(Θi,jv)⊗ v̇σn
i (8.4)

summing over i < j if σn = + (resp. i > j if σn = −), for Θi,j ’s that are Z[q, q−1]-linear

combinations of monomials obtained by multiplying the generators ḟi, ḟi+1, . . . , ḟj−1

(resp. ḟi−1, ḟi−2, . . . , ḟj) together in some order. By induction, ψ̄(v̇b̄) equals v̇b̄ plus
a Z[q, q−1]-linear combination of v̇ā’s for ā � b̄. Combining these two statements, we
deduce that

Θ
(
ψ̄(v̇b̄

)
⊗ v̇σn

bn
) = v̇b + (a Z[q, q−1]-linear combination of v̇a’s for a � b).
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This shows that the formula (8.3) makes ψ(v̇b) into a well-defined element of V̂ ⊗σ of the
desired form. The formula (8.3) also makes sense for arbitrary sums

∑
b∈B pb(q)v̇b due

to the interval-finiteness of the inverse dominance ordering on Pn. Finally, to see that
ψ commutes with the actions of all ḟi and ėi, and that it is an involution, one argues as
in [L, §27.3.1]. �

Now we are in a position to apply “Lusztig’s Lemma” as in the proof of [L, Theorem

27.3.2] to deduce for each b ∈ B that there is a unique vector ċb ∈ V̂ ⊗σ such that

• ψ(ċb) = ċb;
• ċb = v̇b + a (possibly infinite) q Z[q]-linear combination of v̇a’s for a � b.

This defines the canonical basis {ċb |b ∈ B}. It is known (but non-trivial) that each ċb is

always a finite sum of v̇a’s, i.e. ċb ∈ V̇ ⊗σ before completion. Moreover, the polynomials
da,b(q) arising from the expansion

ċb =
∑
a∈B

da,b(q)v̇a (8.5)

are some finite type A parabolic Kazhdan-Lusztig polynomials (suitably normalized).
All of these statements have a natural representation theoretic explanation discussed in
detail in [BLW, §5.9]. In particular, the results of [BLW] (or [CLW]) imply the following.

Theorem 8.3. Under the identification of C⊗Z K0(O∆) with V ⊗σ from Theorem 5.6,
[P (b)] corresponds to the specialization cb of the canonical basis element ċb at q = 1.
Equivalently, (P (b) : M(a)) = [M(a) : L(b)] = da,b(1) for each a, b ∈ B.

We are ready to explain our new algorithm to compute ċb. We proceed by induction

on n. In case n = 1, we have that ċb = v̇b always. If n > 1, we first compute ċb̄ ∈ V̂ ⊗σ̄.
It is a linear combination of finitely many v̇ā’s for ā � b̄. Then we define j ∈ I as follows.

• If σn = + then j is the greatest integer such that j ≤ bn, and the following hold
for all 1 ≤ r < n and all tuples ā = (a1, . . . , an−1) such that v̇ā occurs in the
expansion of ċb̄:
◦ if σr = + then j ≤ ar;
◦ if σr = − then j < ar.

• If σn = − then j is the smallest integer such that j ≥ bn, and the following hold
for all 1 ≤ r < n and all tuples ā = (a1, . . . , an−1) such that v̇ā occurs from the
expansion of ċb̄:
◦ if σr = − then j ≥ ar;
◦ if σr = + then j > ar.

Lemma 8.4. In the above notation, we have that Θ
(
ċb̄ ⊗ v̇

σn
j

)
= ċb̄ ⊗ v̇

σn
j .

Proof. By (8.4), we have that Θ
(
ċb̄ ⊗ v̇

σn
j

)
= ċb̄ ⊗ v̇σn

j +
∑
i (Θi,j ċb̄) ⊗ v̇σn

i summing

over i < j if σn = + (resp. i > j if σn = −), where Θi,j is a linear combination of

non-trivial monomials in the generators ḟj−1, ḟj−2, . . . , ḟi (resp. ḟj , ḟj+1, . . . , ḟi−1). By
the definition of j, all of these generators act as zero on ċb̄. �

Lemma 8.4 shows that the vector ċb̄ ⊗ v̇
σn
j ∈ V̂ ⊗σ is fixed by ψ. Hence, so too is

X
(
ċb̄ ⊗ v̇

σn
j

)
where

X :=

{
ḟbn−1 · · · ḟj+1ḟj if σn = +,

ḟbn · · · ḟj−2ḟj−1 if σn = −.
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By Lemma 4.3, this new vector equals v̇b plus a Z[q, q−1]-linear combination of v̇a’s
for a � b. If all but its leading coefficient lie in q Z[q], it is already the desired vector
ċb. Otherwise, one picks a � b minimal so that the v̇a-coefficient is not in q Z[q], then
subtracts a bar-invariant multiple of the recursively computed vector ċa to remedy this
defficiency. Continuing in this way, we finally obtain a bar-invariant vector with all of
the required properties to be ċb.

The algorithm just described has been implemented in Gap, and is available at
http://pages.uoregon.edu/brundan/papers/A.gap. It is not obvious to us that it
terminates in finite time for every b ∈ B. Based on examples, we believe that this is
indeed the case.

Example 8.5. Suppose σ = (+,+,−,−) and b = (1, 2, 2, 1). By induction, we have
ċ(1,2,2) = v̇(1,2,2) + qv̇(2,1,2) + qv̇(1,3,3) + q2v̇(3,1,3), so take j = 4. We compute

ḟ1ḟ2ḟ3(v̇(1,2,2,4) + qv̇(2,1,2,4) + qv̇(1,3,3,4) + q2v̇(3,1,3,4)) = v̇(1,2,2,1) + qv̇(1,2,1,2) + qv̇(2,1,2,1)

+ qv̇(1,4,1,4) + qv̇(1,3,3,1) + q2v̇(2,1,1,2) + q2v̇(3,1,3,1) + q2v̇(2,3,3,2) + q2v̇(4,1,1,4)

+ q2v̇(2,4,2,4) + (1 + q2)v̇(1,3,1,3) + q3v̇(3,2,3,2) + q3v̇(4,2,2,4) + (q + q3)v̇(2,3,2,3)

+ (q + q3)v̇(3,1,1,3) + (q + q3)v̇(2,2,2,2) + (q2 + q4)v̇(3,2,2,3).

Then we subtract the recursively computed

ċ(1,3,1,3) = v̇(1,3,1,3) + qv̇(3,1,1,3) + qv̇(2,3,2,3) + qv̇(1,4,1,4)

+ q2v̇(3,2,2,3) + q2v̇(4,1,1,4) + q2v̇(2,4,2,4) + q3v̇(4,2,2,4)

to get ċ(1,2,2,1).
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